Math, asked by vishalparihar, 1 year ago

Good.... Morning.... Brainlies....


If the polynomial p(x) = 6x^+4x + k... Has √5 and -√ 5 as zeros, find k.... Plz... Ans...

No.... spam... Plz... ​

Attachments:

Answers

Answered by Anonymous
3

Answer:

p(x) = 6 {x}^{2}  + 4x + k = 0

given \: zeroes \: are \:  \sqrt{5}  \: and \:  \sqrt{ - 5}

put \: x =  \sqrt{5}  \: in \: p(x)

p(x) = 6 ({ \sqrt{5} })^{2}  + 4( \sqrt{5} ) + k = 0

 30 + 4 \sqrt{5}  + k  = 0

k =  - 4 \sqrt{5}  - 30

k =  -2 (2 \sqrt{5}  + 15)

put \: x =  -  \sqrt{5} \:  in \: p(x)

p(x) = 6( -  { \sqrt{5} })^{2}  + 4( -  \sqrt{5} ) + k = 0

30 - 4 \sqrt{5}  + k = 0

k = 4 \sqrt{5}  - 30

k = 2(2 \sqrt{5}  - 15)

HOPE THIS ANSWER WILL HELP YOU.......

Mark as brainliest.......

# jasleenlehri13........☺

Answered by GraceS
0

\sf\huge\bold\pink{Answer:}

Answer: \\ p(x) = 6 {x}^{2} + 4x + k = 0 \\ p(x)=6x2+4x+k=0 \\ given \: zeroes \: are \: \sqrt{5} \: and \: \sqrt{ - 5} \\ given \: zeroes \: are \: 5 \: and \: −5 \\  \\ ☆ \\  \\ put \: x = \sqrt{5} \: in \: p(x) \: put \: x=5 \: in  \:  p(x) \\ p(x) = 6 ({ \sqrt{5} })^{2} + 4( \sqrt{5} ) + k = 0 \\ p(x)=6(5)2+4(5)+k=0 \\ 30 + 4 \sqrt{5} + k = 0 \\ 30+45+k=0 \\ k = - 4 \sqrt{5} - 30 \\ k=−45−30 \\ k = -2 (2 \sqrt{5} + 15) \\ k=−2(25+15) \\  \\ ☆

Similar questions