Math, asked by MARIAANNAALWIN, 1 year ago

Good morning!!
Can anyone pls answer this!!
Regards

Attachments:

Answers

Answered by jiya2752003
0
Hii...

a1+a2+a3+at+at=2(√a1-1+2√a2-4+3√a3-9+4√a4-16+5√a5-25
Answered by Grimmjow
9

\mathsf{Let\;us\;Consider\;the\;LHS\;of\;the\;Given\;Equation :}

\mathsf{1\sqrt{a_1 - 1} + 2\sqrt{a_2 - 4} + 3\sqrt{a_3 - 9} + 4\sqrt{a_4 - 16} + 5\sqrt{a_5 - 25}}

\mathsf{We\;can\;Write\;the\;Given\;LHS\;as\;\sum (n = 1)\;n\sqrt{a_n - n^2}}

\mathsf{Let\;us\;Consider\;the\;RHS\;of\;the\;Given\;Equation :}

\mathsf{(\dfrac{a_1 + a_2 + a_3 + a_4 + a_5}{2})}

\mathsf{We\;can\;Write\;the\;Given\;RHS\;as\;\sum(n = 1)(\dfrac{a_n}{2})}

\mathsf{\implies The\;Given\;Question\;Changes\;to :}

\mathsf{\sum(n = 1)\;n\sqrt{a_n - n^2} = \sum(n = 1)(\dfrac{a_n}{2})}

\mathsf{Now,\;Consider\;the\;Situation : n = 1}

\mathsf{\implies \sqrt{a_1 - 1} = \dfrac{a_1}{2}}

\mathsf{Squaring\;on\;both\;Sides,\;We\;get :}

\mathsf{\implies (a_1 - 1) = \dfrac{(a_1)^2}{4}}

\mathsf{\implies (a_1)^2 - 4(a_1) + 4 = 0}\\\\\mathsf{\implies (a_1 - 2)^2 = 0}\\\\\mathsf{\implies a_1 = 2}

\mathsf{Now,\;Consider\;the\;Situation : n = 2}

\mathsf{\implies \sqrt{a_1 - 1} + 2\sqrt{a_2 - 4} = (\dfrac{a_1 + a_2}{2})}\\\\\mathsf{\implies \sqrt{2 - 1} + 2\sqrt{a_2 - 4} = (\dfrac{2 + a_2}{2})}\\\\\mathsf{\implies 1 + 2\sqrt{a_2 - 4} = (1 + \dfrac{a_2}{2})}\\\\\mathsf{\implies 2\sqrt{a_2 - 4} = (\dfrac{a_2}{2})}\\\\\mathsf{Squaring\;on\;both\;Sides,\;We\;get:}

\mathsf{\implies 16(a_2 - 4) = (a_2)^2}\\\\\mathsf{\implies (a_2)^2 - 16(a_2) + 64}\\\\\mathsf{\implies (a_2 - 8)^2 = 0}\\\\\mathsf{\implies a_2 = 8}

\mathsf{Now,\;Consider\;the\;Situation : n = 3}

\mathsf{\implies \sqrt{a_1 - 1} + 2\sqrt{a_2 - 4} + 3\sqrt{a_3 - 9} = (\dfrac{a_1 + a_2 + a_3}{2})}\\\\\mathsf{\implies \sqrt{2 - 1} + 2\sqrt{8 - 4} + 3\sqrt{a_3 - 9} = (\dfrac{2 + 8 + a_3}{2})}\\\\\mathsf{\implies 5 + 3\sqrt{a_3 - 9} = (5 + \dfrac{a_3}{2})}\\\\\mathsf{\implies 3\sqrt{a_3 - 9} = (\dfrac{a_3}{2})}\\\\\mathsf{Squaring\;on\;both\;Sides,\;We\;get:}

\mathsf{\implies 36(a_3 - 9) = (a_3)^2}\\\\\mathsf{\implies (a_3)^2 - 36(a_3) + 324}\\\\\mathsf{\implies (a_3 - 18)^2 = 0}\\\\\mathsf{\implies a_3 = 18}

\mathsf{Now,\;Consider\;the\;Situation : n = 4}

\mathsf{\implies \sqrt{a_1 - 1} + 2\sqrt{a_2 - 4} + 3\sqrt{a_3 - 9} + 4\sqrt{a_4 - 16} = (\dfrac{a_1 + a_2 + a_3 + a_4}{2})}\\\\\mathsf{\implies \sqrt{2 - 1} + 2\sqrt{8 - 4} + 3\sqrt{18 - 9} + 4\sqrt{a_4 - 16} = (\dfrac{2 + 8 + 18 + a_4}{2})}\\\\\mathsf{\implies 14 + 4\sqrt{a_4 - 16} = (14 + \dfrac{a_4}{2})}\\\\\mathsf{\implies 4\sqrt{a_4 - 16} = (\dfrac{a_4}{2})}\\\\\mathsf{Squaring\;on\;both\;Sides,\;We\;get:}

\mathsf{\implies 64(a_4 - 16) = (a_4)^2}\\\\\mathsf{\implies (a_4)^2 - 64(a_4) + 1024}\\\\\mathsf{\implies (a_4 - 32)^2 = 0}\\\\\mathsf{\implies a_4 = 32}

\mathsf{Now,\;Consider\;the\;Situation : n = 5}

\mathsf{\implies \sqrt{a_1 - 1} + 2\sqrt{a_2 - 4} + 3\sqrt{a_3 - 9} + 4\sqrt{a_4 - 16} + 5\sqrt{a_5 - 25} = (\dfrac{a_1 + a_2 + a_3 + a_4 + a_5}{2})}\\\\\mathsf{\implies \sqrt{2 - 1} + 2\sqrt{8 - 4} + 3\sqrt{18 - 9} + 4\sqrt{32 - 16} + 5\sqrt{a_5 - 25} = (\dfrac{2 + 8 + 18 + 32 + a_5}{2})}\\\\\mathsf{\implies 30 + 5\sqrt{a_5 - 25} = (30 + \dfrac{a_5}{2})}\\\\\mathsf{\implies 5\sqrt{a_5 - 25} = (\dfrac{a_5}{2})}\\\\\mathsf{Squaring\;on\;both\;Sides,\;We\;get:}

\mathsf{\implies 100(a_5 - 25) = (a_5)^2}\\\\\mathsf{\implies (a_5)^2 - 100(a_5) + 2500}\\\\\mathsf{\implies (a_5 - 50)^2 = 0}\\\\\mathsf{\implies a_5 = 50}

\mathsf{\implies a_1 + a_2 + a_3 + a_4 + a_5 = (2 + 8 + 18 + 32 + 50) = 110}


Nikki57: You answered this question in a very nice way. I appreciate it :)
Noah11: Brilliant Answer Grim, Keep it up! :)
Grimmjow: Thank you! for your Kind Words (Nikki & Noah Bro)
Similar questions