Math, asked by michaelgimmy, 9 months ago

✨Good Morning Everyone...✨

Factorise the Following -
 {x}^{8}  - 1
CLUE -
use \: identities \:  =  {a}^{2} -   {b}^{2}  =  > (a + b)(a - b) \: and \\  =  >  {a}^{4}  +  {b}^{4}  = ( {a}^{2}  +  \sqrt{2} ab + b {}^{2} )( {a}^{2}  -  \sqrt{2} ab +  {b}^{2} )
REFERENCE -
Class 9 - RS AGGARWAL - Factorisation of Polynomials - EXERCISE 3B - Q. 37

❌ PLEASE DON'T SPAM ❌​

Answers

Answered by sebastianhere
6

Step-by-step explanation:

this is the answer

if it feels correct to u

plz thank

Attachments:
Answered by prince5132
15

GIVEN :-

  • x⁸ - 1.

TO FIND :-

  • The factorise form of x⁸ - 1.

SOLUTION :-

 \\   \underline{\boldsymbol{According\: to \:the\: Question\: \div }} \\

 : \implies \displaystyle \sf \: x ^{8}  - 1 \\  \\  \\

: \implies \displaystyle \sf(x ^{4})^{2}  - (1) ^{2}  \\  \\

 \dag \:  \displaystyle \rm \: Identity : a^{2} - b^{2} = (a + b)(a - b) \\  \\

: \implies \displaystyle \sf \: (x ^{4}  + 1)(x ^{4}  - 1) \\  \\  \\

: \implies \displaystyle \sf \: \bigg \{x ^{4}  + 1 \bigg \} \bigg \{ (x ^{2} ) ^{2}  + (1) ^{2}  \bigg \}  \\  \\

 \dag \:  \displaystyle \rm \: Identity : a^{2} - b^{2} = (a + b)(a - b) \\  \\

: \implies \displaystyle \sf  \bigg \{x ^{4}  + 1 \bigg \} \bigg \{ (x ^{2}  + 1)(x ^{2}  - 1) \bigg \} \\  \\  \\

: \implies \displaystyle \sf \bigg \{x ^{4}  + 1 \bigg \} \bigg \{ (x ^{2}  + 1)(x )^{2}   - (1) ^{2}  \bigg \} \\  \\

 \dag \:  \displaystyle \rm \: Identity : a^{2} - b^{2} = (a + b)(a - b) \\  \\

\displaystyle \sf   : \implies\bigg \{x ^{4}  + 1 \bigg \} \bigg \{ (x ^{2}  + 1)(x  - 1)(x  + 1)  \bigg \}\\  \\  \\

 :  \implies \underline{ \boxed{\displaystyle \sf  (x ^{4}  + 1)(x ^{2}  + 1)(x + 1)(x - 1)}} \\  \\

 \therefore \underline{\displaystyle \sf \ Answer \ is \ (x ^{4}  + 1)(x ^{2}  + 1)(x + 1)(x - 1)}

Similar questions