GOOD MORNING.
.
.
.
Q. 7
GIVE ME THE WELL EXPLAINED SOLUTION.
Answers
ANSWER
Let L=cagbpc -----1
[L]= [L]
[c]=[LT-1]
[g]=[LT-2]
[p]=[ML-1T-2]
[L]=[LT-1]a[LT-2]b[ML-1T-2]c
[L]=[McLa+b-cT-a-2b-2c]
COMPARING BOTH SIDES,
c=0, a+b-c=1
a+b+0=1
a+b=1 -------2
-a-2b-2c=0
-a-2b=0
a=-2b
PUTTING a=-2b , in equation 2
-2b+b=1
b=-1
a+b=1 (eqn. 2)
a-1=1
a=2
PUTTING VALUES IN EQN. 1
L=c2g-1p0
L=c2g-1
Units of...
c = m/s
g = m/s^2
P = (kgm/s^2) / m^2 = kg / (ms^2)
Dimensional formula of...
c = [LT^-1]
g = [LT^-2]
P = [ML^-1 T^-2]
c^a g^b P^c = [L] = [LT^-1]^a [LT^-2]^b [ML^-1 T^-2]^c
[L] = [L]^(a + b - c) [T]^(-a - 2b - 2c) [M]^c
From above equation
1 = a + b - c ——(1)
0 = -a - 2b - 2c —-(2)
0 = c ——(3)
Substitute c = 0 in equation (1) and (2)
1 = a + b ; a = -2b
From above equations
b = -1 and a = 2
Finally we got
a = 2
b = -1
c = 0
The dimension of length is therefore
c^a g^b P^c = c^2 g^-1 P^0 = (c^2) / g