Math, asked by Justinc, 1 day ago

Grade 7 IIT Foundation Maths.
Answer step by step.
 {3}^{a} - {3}^{a - 1} = 18
I will mark as brainliest!!!!!​
Fasttt!!!!
I give you 50 point

Answers

Answered by ddddog
1

\Large\text{\underline{\underline{Question}}}

Solve the following equation: -

\text{$\cdots\longrightarrow\boxed{3^{a}-3^{a-1}=18.}$}

\Large\text{\underline{\underline{Related topic}}}

Exponential properties

We use exponents as a way to treat either huge or tiny numbers. In the scientistic notation, astronomy, and more. Some say, in a joke, that the life expectancy of astronomers doubled after the development of exponents and logarithms.

Some crucial exponential properties

\text{$\cdots\longrightarrow\boxed{a^{m}\cdot a^{n}=a^{m+n}.}$}

\text{$\cdots\longrightarrow\boxed{a^{m}\div a^{n}=a^{m-n}.}$}

\Large\text{\underline{\underline{Explanation}}}

Let's multiply 3 on both equations.

\text{$\cdots\longrightarrow3^{a+1}-3^{a}=2\cdot3^{3}.$}

Now, we can find the common factor on the left-hand side.

\text{$\cdots\longrightarrow3^{a}\cdot(3-1)=2\cdot3^{3}.$}

Let's divide by 2.

\text{$\cdots\longrightarrow3^{a}=3^{3}.$}

Now, we can solve the equation by comparing the exponents.

\text{$\cdots\longrightarrow\boxed{a=3.}$}

\Large\text{\underline{\underline{More information}}}

Some other properties of exponents

\text{$\cdots\longrightarrow \boxed{a^{-n}=\dfrac{1}{a^{n}}.$\ $(a\neq0.)}$}

\text{$\cdots\longrightarrow \boxed{a^{0}=1.$\ $(a\neq0.)}$}

\text{$\cdots\longrightarrow \boxed{(a^{m})^{n}=a^{mn}.}$}

\text{$\cdots\longrightarrow \boxed{\sqrt[n]{a}=a^{\frac{1}{n}}.}$}

Answered by jitenderjakhar
0

Step-by-step explanation:

3^a - 3^(a-1)=18

3^a - 3^a /3 =18

3^a ( 1- 1/3)=18

3^a (2/3) = 18

3^a = 18× 3/2

3^a = 27

3^a = 3^3

a = 3

please mark as brainliest.

Similar questions