Math, asked by yashsingh04026, 2 months ago

Graph of quadratic polynomial for cases a>0 f(x) = x²-2x-8 and a<0 f(x) = -x²-2x+3

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:f(x) = {x}^{2} - 2x - 8

Let assume that,

\rm :\longmapsto\:y = {x}^{2} - 2x - 8

To plot the graph of the quadratic polynomial which is always parabola, the following steps have to be followed :-

Step :- 1 Vertex of parabola

We know, vertex of parabola of quadratic polynomial ax² + bx + c is given by

\blue{ \boxed{\bf \:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)}}

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  - 2

\rm :\longmapsto\:c =  - 8

So,

\rm :\longmapsto\:\:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( - \dfrac{ ( - 2)}{2(1)} , \: \dfrac{4(1)( - 8) - {( - 2)}^{2} }{4(1)} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( 1 , \: \dfrac{ - 32 - 4 }{4} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( 1 , \: \dfrac{ - 36 }{4} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( 1 , \:  - 9 \bigg)

Step :- 2

Point of intersection with x - axis

We know, on x - axis, y = 0.

So, on substituting the value, we get

\rm :\longmapsto\:{x}^{2} - 2x - 8  = 0

\rm :\longmapsto\:{x}^{2} - 4x + 2x - 8  = 0

\rm :\longmapsto\:x(x - 4) + 2(x - 4) = 0

\rm :\longmapsto\:(x - 4)(x +2) = 0

\bf\implies \:x = 4 \:  \: or \:  \: x =  - 2

Hence, the point of intersection with x- axis is (4, 0) and ( - 2, 0).

Now,

Point of intersection with y - axis.

We know, on y - axis, x = 0

So, on Substituting the value in given curve, we get

\rm :\longmapsto\:y = {0}^{2} - 2(0) - 8

\rm :\longmapsto\:y = - 8

Hence, the point of intersection with y- axis is (0, - 8).

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 8 \\ \\ \sf 4 &amp; \sf 0 \\ \\ \sf  - 2 &amp; \sf 0\\ \\ \sf 1 &amp; \sf  - 9 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

Now, Consider

\rm :\longmapsto\:f(x) =  - {x}^{2} - 2x + 3

Let us assume that,

\rm :\longmapsto\:y =  - {x}^{2} - 2x + 3

Step :- 1 Vertex of parabola

\blue{ \boxed{\bf \:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)}}

Here,

\rm :\longmapsto\:a =  - 1

\rm :\longmapsto\:b =  - 2

\rm :\longmapsto\:c =  3

So,

\rm :\longmapsto\:\:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( - \dfrac{ ( - 2)}{2( - 1)} , \: \dfrac{4( - 1)(3) - {( - 2)}^{2} }{4( - 1)} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( - 1 , \: \dfrac{ - 12 - 4}{ - 4} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( - 1 , \: \dfrac{ - 16}{ - 4} \bigg)

\rm :\longmapsto\:\:Vertex = \bigg( - 1 , \: 4 \bigg)

Step :- 2

Point of intersection with x - axis

We know, on x - axis, y = 0.

So, on substituting the value, we get

\rm :\longmapsto\:- {x}^{2} - 2x + 3 = 0

\rm :\longmapsto\:{x}^{2}  + 2x - 3 = 0

\rm :\longmapsto\:{x}^{2}  + 3x - x - 3 = 0

\rm :\longmapsto\:x(x + 3) - 1(x + 3) = 0

\rm :\longmapsto\:(x + 3)(x - 1) = 0

\bf\implies \:x = 1 \:  \: or \:  \: x =  - 3

Hence, the point of intersection with x- axis is (1, 0) and ( - 3, 0).

Now,

Point of intersection with y - axis.

We know, on y - axis, x = 0

So, on Substituting the value in given curve, we get

\rm :\longmapsto\:-y =  -  {0}^{2} - 2(0) + 3 =  3

Hence, the point of intersection with y- axis is (0, 3).

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 3 \\ \\ \sf  - 3 &amp; \sf 0 \\ \\ \sf  1 &amp; \sf 0\\ \\ \sf  - 1 &amp; \sf  4 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

Attachments:
Answered by svrnjn80gmailcom
0

Answer:

the above answer is correct.

Similar questions