Math, asked by tristin05, 2 days ago

graph the system of equations given below on the provided graph 2x - 3y = - 18
3x + y = -5

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider first equation

\rm \: 2x - 3y =  - 18 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 2 \times 0 - 3y =  - 18 \\

\rm \: 0 - 3y =  - 18 \\

\rm \:  - 3y =  - 18 \\

\rm\implies \:y = 6 \\

Substituting 'y = 0' in the given equation, we get

\rm \: 2x - 3 \times 0 =  - 18 \\

\rm \: 2x -  0 =  - 18 \\

\rm \: 2x=  - 18 \\

\rm\implies \:x =  \:  -  \: 9 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf  - 9 & \sf 0 \end{array}} \\ \end{gathered}}

Consider second equation

\rm \: 3x + y =  - 5 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 3 \times 0 + y =  - 5 \\

\rm \:  0 + y =  - 5 \\

\rm\implies \:y =  \:  -  \: 5 \\

Substituting 'x = - 1' in the given equation, we get

\rm \: 3 \times ( - 1) + y =  - 5 \\

\rm \:  - 3 + y =  - 5 \\

\rm \:   y =  - 5  + 3\\

\rm\implies \:y =   \: -  \: 2 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 5 \\ \\ \sf  - 1 & \sf  - 2 \end{array}} \\ \end{gathered}}

➢ Now draw a graph using the points (0 , 6), (- 9, 0), (0, - 5) & (- 1 , - 2)

➢ See the attachment graph.

Hence, from graph we concluded that given system of equations is consistent having unique solution and solution is

 \red{\rm\implies \:\boxed{ \rm{ \: \: x \:  =  \:  -  \: 3 \: }} \:  \: and \:  \: \boxed{ \rm{ \:y \:  =  \: 4 \:  \: }} }\\

Attachments:
Similar questions