Math, asked by stanzeem263, 9 months ago

graphical method 1) 2x+y=8, x+y=4​

Answers

Answered by amitkumar44481
2

SolutioN :

We have, Pair of Linear Equation.

 \tt \dagger \:  \:  \:  \:  \:  2x + y = 8. \:  \:  \:  - (1)

 \tt \dagger \:  \:  \:  \:  \:  x + y = 4. \:  \:  \:  - (2)

\rule{90}1

✎ Let's Take some value of x.

♢ Taking Equation ( 1 )

 \tt  : \implies 2x + y = 8.

 \tt  : \implies 2(1) + y = 8.

 \tt  : \implies y = 8 - 2

 \tt  : \implies y = 6.

\rule{90}1

☛ When, x = 2.

 \tt  : \implies 2x+ y = 8.

 \tt  : \implies 2(2) + y = 8.

 \tt  : \implies 4 + y = 8.

 \tt  : \implies y = 8 - 4

 \tt  : \implies y = 4.

\rule{90}1

☛ When, x = 3.

 \tt  : \implies 2x + y = 8.

 \tt  : \implies 2(3) + y = 8.

 \tt  : \implies 6 + y = 8.

 \tt  : \implies  y = 8 - 6

 \tt  : \implies  y = 2.

\rule{120}3

♢ Taking Equation ( 2 )

 \tt \dagger \:  \:  \:  \:  \:  x + y = 4.

☛ When, x = 1.

 \tt  : \implies 1 + y = 4.

 \tt  : \implies  y = 3.

\rule{90}1

☛ When, x = 2.

 \tt  : \implies x + y = 4.

 \tt  : \implies 2 + y = 4.

 \tt  : \implies  y = 4 - 2.

 \tt  : \implies y = 2.

\rule{90}1

☛ When, x = 3.

 \tt  : \implies x+ y = 4.

 \tt  : \implies 3 + y = 4.

 \tt  : \implies y = 4 - 3

 \tt  : \implies  y = 1.

\rule{120}3

✡ Let's collect Information

\begin{array}{| c | c | c | c | }\cline{1-4}\multicolumn{4}{|c|}{${\dagger \: \: \: \: \: 2x + y =8.$}}\\ \cline{1-4} x & 1 & 2 & 3 \\ \cline{1-4} y & 6 & 4 & 2 \\ \cline{1-4} \end{array}

\begin{array}{| c | c | c | c | }\cline{1-4}\multicolumn{4}{|c|}{${\dagger \: \: \: \: \: x + y = 4.$}} \\ \cline{1-4} x & 1 & 2 & 3 \\ \cline{1-4} y & 3 & 2 & 1 \\ \cline{1-4} \end{array}

Attachments:
Answered by BrainlyIAS
7

Let two equations be ,

2 x + y = 8 ... (1)

x + y = 4 ... (2)

Let's take eq (1) , 2 x + y = 8.

When x = 1 ,

⇒ 2 (1) + y = 8

⇒ y = 6

When x = 2 ,

⇒ 2 (2) + y = 8

⇒ y = 4

When x = 3 ,

⇒ 2 (3) + y = 8

⇒ y = 2

Now take points (1,6) , (2,4) , (3,2) [From eq (1)]

Let's take eq (2) , x + y = 4

When x = 1

⇒ y = 3

When x = 2 ,

⇒ y = 2

When x = 3 ,

⇒ y = 1

Now take points (1,3) , (2,2) , (3,1) [ From eq (2) ]

Plot all of these points in a graph.

Similar questions