Physics, asked by kichuwalia0101, 7 months ago

Gravitational potential in a region varies as v(x,y)=(x^(2) +y^(2)). Find the force (ln N) experienced by 2kg mass placed at (3,4).​

Answers

Answered by nirman95
15

Given:

Gravitational potential in a region varies as v(x,y)=(x^(2) +y^(2)).

To find:

Force experienced by a 2kg object placed at (3,4) ?

Calculation:

Gravitational potential is given as :

 \therefore \: V =  {x}^{2}  +  {y}^{2}

Now, Gravitational Potential Energy will be as follows:

 \therefore \:  U= m \bigg \{ {x}^{2}  +  {y}^{2}  \bigg \}

 \implies \:  U= 2\bigg \{ {x}^{2}  +  {y}^{2}  \bigg \}

 \implies \:  U= 2 {x}^{2}  +2  {y}^{2}

Now, force along X axis:

 \therefore \: F_{x} =  -  \dfrac{ \partial U}{ \partial x}

 \implies \: F_{x} =  -  \dfrac{ \partial  \bigg(2 {x}^{2}   + 2 {y}^{2}  \bigg)}{ \partial x}

 \implies \: F_{x} =  -  4x

 \implies \: F_{x} =  -  4 \times 3

 \implies \: F_{x} =  -  12 \: N

Again, force in Y axis:

 \therefore \: F_{y} =  -  \dfrac{ \partial U}{ \partial y}

 \implies \: F_{y} =  -  \dfrac{ \partial  \bigg(2 {x}^{2}   + 2 {y}^{2}  \bigg)}{ \partial y}

 \implies \: F_{y} =  -  4y

 \implies \: F_{y} =  -  4 \times 4

 \implies \: F_{y} =  -  16 \: N

So, required force is:

 \therefore \: F_{net} =  \sqrt{ {(F_{x})}^{2} +  {(F_{y})}^{2}  }

 \implies \: F_{net} =  \sqrt{{(-12)}^{2} +  {(-16)}^{2}  }

 \implies \: F_{net} =  \sqrt{144 +  256 }

 \implies \: F_{net} =  \sqrt{400 }

 \implies \: F_{net} =  20 \: N

So, net force is 20 N.

Similar questions