Math, asked by jogeswararaok115, 10 months ago

Ground is in the shape of parallelogram. the height of the parallelogram is 14 metres and the corresponding base is 8 metres longer than its height. find the cost of levelling the ground at the rate of rs 15 per sq. m

Answers

Answered by abhishekmishra737007
3

Answer :-

$ 1,680

Given :-

b = 8 m

h = 14 m

To find the cost of levelling the ground at the rate of $ 15 /m².

Solution:-

First we have to find the area which have to be levelled.

Area of parallelogram is given by :-

put the given values,

Now,

Cost of levelling of 1 m² ground is $ 15.

Cost of levelling of 112m² cost is

= 15 × 112

= $ 1,680

hence,

The cost of levelling the ground will be $ 1,680.

Answered by CɛƖɛxtríα
163

Given:

  • Height of the parallelogram (ground) = {\bold{14\:m}}
  • Base of the parallelogram (ground) = \bold{(8+Height)\:m}
  • Cost of levelling per m² = {\bold {15/-}}

To find:

  • The cost of levelling the ground.

Solution:

To find the cost of levelling, first we've to find the area of the ground. And it is given that the ground is in the shape of a parallelogram, it's area will be the product of its base and its height. Once we find the area, we can find the cost of levelling by multiplying the area with cost per m². So, now let's do it !!

\normalsize{\boxed{\sf{Area\:of\: parallelogram=Base \times Height\:sq.units}}}

Now substitute the measures given in the formula.

\implies{\sf{(8 + Height)\times 14}}

\implies{\sf{(8 + 14)\times 14}}

\implies{\sf{22\times 14}}

\implies{\sf{308}}

\large\underline{\boxed{\rightarrow{\tt{Area\:of\:the\:ground=308\:{m}^{2}}}}}

Now, let's find the cost of levelling the ground.

\normalsize{\boxed{\sf{Cost\:of\: levelling=Cost\:per\:{m}^{2}\times Area\:of\:the\:ground}}}

\implies{\sf{15\times308}}

\implies\underline{\sf{4620\:\:rupees}}

Answer:

  • The cost of levelling the ground will be \large\underline{\boxed{\tt{\red{4620/-}}}}

_______________________________________

Some important formulae for Area:

\normalsize{\sf{1)\:Triangle=\frac{1}{2}\times Base\times Height\:sq.units}}

\normalsize{\sf{2)\:Right-angled\: triangle=\frac{1}{2}ab\:sq.units}}

\normalsize{\sf{3)\:Quadrilateral=\frac{1}{2}\times d\times(h1+h2)\:sq.units}}

\normalsize{\sf{4)\:Trapezium=\frac{1}{2}h\times(a+b)\:sq.units}}

\normalsize{\sf{5)\:Rhombus=\frac{1}{2}\times d1\times d2\:sq.units}}

\normalsize{\sf{6)\:Rectangle=Length\times Breadth\:sq.units}}

\normalsize{\sf{7)\:Square={Side}^{2}\:sq.units}}

\normalsize{\sf{8)\:Circle=\pi{r}^{2}\:sq.units\:or\:\frac{1}{4}\pi{d}^{2}\:sq.units}}

\normalsize{\sf{9)\:Semi-circle=\frac{1}{2}\pi{r}^{2}\:sq.units}}

\normalsize{\sf{10)\:Quadrant\:of\:circle=\frac{1}{4}\pi{r}^{2}\:sq.units\:or\:\frac{\theta}{360°}\pi{r}^{2}\:sq.units}}

\normalsize{\sf{11)\:Scalene\: triangle=\sqrt{s(s - a)(s - b)(s - c)}\:sq.units}}

\normalsize{\sf{12)\:Equilateral\: triangle=\frac{\sqrt{3}}{4}{a}^{2}=\frac{1}{2}ah\:sq.units}}

\normalsize{\sf{13)\:Isosceles\: triangle=\frac{1}{2}\times b \times AD\:sq.units}}

Attachments:
Similar questions