Group-BHigher Trigonometry9.1. State and prove De Moivre's theorem for rational index
Answers
Step-by-step explanation:
Proving (cos θ + isin θ)n = cos (nθ) + isin (nθ)
Case 1 : If n is a positive number
L.H.S = (cos θ + isin θ)n
= (cos θ + isin θ) × (cos θ + isin θ) × (cos θ + isin θ) × (cos θ + isin θ)
= cos (nθ) + isin (nθ)
= R.H.S
Case 2 : If n is a negative number
Consider, n = -m
L.H.S = (cos θ + isin θ)-m
= 1 / (cos θ + isin θ)m
= 1 / (cos mθ + isin mθ)
= ( 1 / cos mθ + isin mθ ) × (cos mθ - isin mθ / cos mθ - isin mθ)
= (cos mθ - isin mθ) / (cos² mθ + sin² mθ)
= (cos mθ - isin mθ) / 1
= cos (-mθ) + isin (-mθ)
= cos (nθ) + isin (nθ)
= R.H.S
Case 3 : If n is a fractional number
Consider, n = p/q
L.H.S = (cos θ + isin θ)p/q
= (cos pθ + isin pθ)1/q
= (cos (pθ)/q + isin (pθ)/q)
= (cos (p/q)θ + isin (p/q)θ)
= cos (nθ) + isin (nθ)
= R.H.S
So, the De Moivre's Theorem is proved for all rational numbers.