Grow a plant in a pot or your garden and observe the various steps of plant growth. Make
an arrangement for providing drop by drop water to your plant as done in drip irrigation
system. Paste a picture of the same.
Answers
Answer:
Efficient Use of Water in the Garden and Landscape
Larry Stein, Extension Horticulturist
Doug Welsh, Extension Horticulturist
Efficient, Responsible Water Use
The danger of exhausting valuable aquifers by excessive pumping is paralleled by the threat of polluting the groundwater with industrial, agricultural and home landscape contaminants. Nitrates from excessive and untimely fertilization are especially threatening.
Plants, Soils and Water
Fig. 1 the plant//soil/water cycle. Shows water loss by leaves (transpiration), surface evaporation, water added by rainfall and irrigation and absorption by roots.When water is applied to the soil it seeps down through the root zone very gradually. Each layer of soil must be filled to “field capacity” before water descends to the next layer. This water movement is referred to as the wetting front. Water moves downward through a sandy coarse soil much faster then through a fine-textured soil such as clay or silt.
If only one-half the amount of water required for healthy growth of your garden or landscape is applied at a given time, it only penetrates the top half of the root zone; the area below the point where the wetting front stops remains dry as if no irrigation has been applied at all.
Once enough water is applied to move the wetting front into the root zone, moisture is absorbed by plant roots and moves up through the stem to the leaves and fruits. Leaves have thousands of microscopic openings, called stomates, through which water vapor is lost from the plant. This continual loss of water called transpiration, causes the plant to wilt unless a constant supply of soil water is provided by absorption through the roots.
The total water requirement is the amount of water lost from the plant plus the amount evaporated from the soil. These two processes are called evapotranspiration. Evapotranspiration rates vary and are influenced by day length, temperature, cloud cover, wind, relative humidity, mulching, and the type, size and number of plants growing in a given area.
Water is required for the normal physiological processes of all plants. It is the primary medium for chemical reactions and movement of substances through the various plant parts. Water is an essential component in photosynthesis and plant metabolism, including cell division and enlargement. It is important also in cooling the surfaces of land plants by transpiration.
Water is a primary yield-determining factor in crop production. Plants with insufficient water respond by closing the stomata, leaf rolling, changing leaf orientation and reducing leaf and stem growth and fruit yield.
Water Quality
Not all water is suitable for use as an irrigation source. Prior to implementing an irrigation system, the water source should be tested for water quality. The instructions for testing and the testing results may be obtained from the Texas AgriLife Extension Service or an independent water lab. The results of the test will determine if the water is suitable for irrigation or reveal if any special tactics will be required to overcome quality deficiencies.
Major factors in determining water quality are its salinity and sodium contents. Salinity levels are expressed as categories based on conductivity.
Category C-1 represents a low salinity hazard. Water in this category has a conductivity of less than 2.5 millimhos/cm. It can be used for most crops without any special tactics.
Category C-2 reflects salinity that results in a conductivity of 2.5 – 7.5 millimhos/cm. The water in this category can be used for tolerant plants if adequate leaching occurs.
Category C-3 is high salinity water that has conductivity in the 7.5-22.5 millimhos/cm range. It can not be used effectively on poorly drained soils. On well drained, low salt soils, the water can be used for salt tolerant plants if it is well managed.
Category C-4 water is very high salinity and cannot be used for irrigation on a regular basis.
Sodium is a major component of the salts in most saline waters but its impact can be detrimental to soil structure and plant growth beyond its status as a component of salinity. The level of sodium (Na) in irrigation water is another important factor of quality.
Explanation:
hope it's helpful to you!
Answer:
what is sort answerof this question