>
2x = √2 + 1 / √2 - 1
y = √2 - 1 / √2 + 1
find the value of x² + y²+xy = ?
Answers
Answered by
1
Answer:
I have got the answer is 35
Step-by-step explanation:
so we have,
x = (√2 + 1) /(√2 - 1)
or, x = (√2 + 1)(√2 + 1) / (√2 - 1)(√2 + 1)
or, x = [(√2)² + (2 × √2 × 1) + (1)²] / [(√2)² - (1)²]
or, x = [2 + 2√2 + 1] / [2 -1]
or, x = [3 + 2√2] / 1
or, x = 3 + 2√2
y = (√2 - 1) / (√2 + 1)
or, 1/y = (√2 + 1) / (√2 - 1)
or, 1/y = 3 + 2√2
or, y = 1/(3 + 2√2)
or, y = (3 - 2√2) / (3 + 2√2)(3 - 2√2)
or, y = (3 - 2√2) / [(3)² - (2√2)²]
or, y = (3 - 2√2) / [9 - 8)
or, y = 3 - 2√2
(x × y) = [(√2 + 1) / (√2 - 1)] × [(√2 - 1)(√2 + 1)] = 1
(x + y) = (3 + 2√2 + 3 - 2√2) = 6
x² + y² + xy
= (x + y)² - 2xy + xy
= (6)² - (2 × 1) + 1
= 36 - 2 + 1
= 37 - 2
= 35
see this answer hope it will help you
Similar questions