Physics, asked by Anonymous, 7 months ago

=> Derivation of Bandwidth
  \rm \:  \implies2 \Delta  \omega =  \omega_2 -  \omega_1 =  \frac{R}{L}

Answers

Answered by amansharma264
26

EXPLANATION.

 \sf :  \implies \: 2 \Delta \omega \:  =   \omega_{2} \:  -  \:   \omega_{1} =  \dfrac{ R }{L}  \\  \\\sf :  \implies \:   i_{0} \:  =  \frac{  \epsilon_{0}}{z}  \\  \\ \sf :  \implies \: at  \:  \: \:   \omega_{1} \:  \:  \: and \:  \:  \:    \omega_{2} \:  \implies \: resonance \:  \: occur \:  \: (X) \\  \\  \sf :  \implies \: z \:  =  \sqrt{R {}^{2}  +  ( x_{l} \:  -  x_{c}) {}^{2}  }  \\  \\ \sf :  \implies \: at \:    \omega_{1} \:  \:  \: and \:  \:  \:   \omega_{2} \:  =  \: half \: power \: frequency

\sf :  \implies \:  i_{0} =  \dfrac{  \epsilon_{0} }{z}  \\  \\  \sf :  \implies \:  i_{0} \:  =   \frac{  \epsilon_{0} }{ \sqrt{R {}^{2} + (  x_{l} \:  -  \:  x_{c}) {}^{2}  } } \\  \\  \sf :  \implies  \:  i_{0} \:  =  \frac{   \epsilon_{0}}{ \sqrt{R {}^{2}  + (  \omega_{l} -  \dfrac{1}{  \omega_{c} } ) {}^{2} } }  \\  \\ \sf :  \implies \: at \: these \: frequency \:  \implies \: p \:  =  \frac{ p_{max} }{2} \\  \\  \sf :  \implies \:  i_{0} \:  =  \frac{  l_{0} {max}}{2}  \implies \:  =  \frac{   \epsilon_{0} }{R \sqrt{2} }

 \sf :  \implies \:  \dfrac{   \epsilon_{0} }{R \sqrt{2} } =  \dfrac{  \epsilon_{0} }{ \sqrt{R {}^{2} + (  \omega_{l} \:  -   \dfrac{1}{ \omega_{c} }) {}^{2}    } } \\  \\  \sf :  \implies \:  =   R {}^{2} + ( \omega_{l} \:  -  \frac{1}{  \omega_{c} }) {}^{2} = 2R {}^{2} \\  \\ \sf :  \implies \: ( \omega \: l \:  -  \:  \frac{1}{ \omega \: c} ) {}^{2}  = R {}^{2}

 \sf :  \implies \: ( \omega \: l \:  -  \dfrac{1}{ \omega \: c} ) =  \pm  R \\  \\  \sf :  \implies  \:   \omega_{1}l \:  -  \frac{1}{  \omega_{1}c }  =  - R \:  \:  \: .....(1) \\  \\ \sf :  \implies \: \omega_{2}l \:  -  \frac{1}{  \omega_{2}c }  =   +  R \:  \:  \: .....(2) \\  \\ \sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get

 \\  \\ \sf :  \implies adding \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get \:  \:  \\  \\ \sf :  \implies \: (  \omega_{1} \:  +   \omega_{2})l \:  -   \dfrac{1}{c} ( \dfrac{1}{  \omega_{1}}  +  \dfrac{1}{  \omega_{2}} ) = 0 \\  \\ \sf :  \implies \:  (  \omega_{1} \:  +   \omega_{2})l   \:  -  \:  \frac{1}{c} ( \frac{  \omega_{2} \:  +  \:   \omega_{1}  }{ \omega_{1}  \omega_{2} } ) = 0 \\  \\ \sf :  \implies \: l \:  =  \frac{1}{c  \omega_{1} \omega_{2}  }

\sf :  \implies  \: subtract \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get \\  \\ \sf :  \implies  \: (  \omega_{2} \:  -   \omega_{1})l  \:  -  \frac{1}{ \omega_{2}c \:  }  +  \frac{1}{  \omega_{1}c }  = 2R \\  \\ \sf :  \implies \: (  \omega_{2} \:  -   \omega_{1})l \:  \:  +  \:  \:  \frac{1}{c}( \frac{1}{  \omega_{1} \: }   -  \frac{1}{  \omega_{2} }  ) = 2R \\  \\ \sf :  \implies \: (  \omega_{2} \:  -   \omega_{1})l \:  \:  +  \:  \:  \frac{1}{c}  ( \frac{  \omega_{2} \:  -  \:    \omega_{1}  }{  \omega_{1}  \omega_{2} } ) = 2R

 \sf :  \implies \: (  \omega_{2} \:  -  \:   \omega_{1}) \:  \: (l   +  \dfrac{1}{c  \omega_{1}  \omega_{2}} ) = 2R \\  \\ \sf :  \implies \: (  \omega_{2} \:  -   \omega_{1} \: ) \: (l \:  +  \: l) = 2R \\  \\ \sf :  \implies  \: (  \omega_{2} \:  -   \omega_{1}) \: (2l) = 2R \\  \\ \sf :  \implies \:  \orange{ \underline{ \underline{(  \omega_{2} \:  -  \:   \omega_{1}) =  \frac{R}{l} \:  \:  \implies \: hence \:  \: proved }}}

Answered by xXMarziyaXx
1

EXPLANATION.

 \sf :  \implies \: 2 \Delta \omega \:  =   \omega_{2} \:  -  \:   \omega_{1} =  \dfrac{ R }{L}  \\  \\\sf :  \implies \:   i_{0} \:  =  \frac{  \epsilon_{0}}{z}  \\  \\ \sf :  \implies \: at  \:  \: \:   \omega_{1} \:  \:  \: and \:  \:  \:    \omega_{2} \:  \implies \: resonance \:  \: occur \:  \: (X) \\  \\  \sf :  \implies \: z \:  =  \sqrt{R {}^{2}  +  ( x_{l} \:  -  x_{c}) {}^{2}  }  \\  \\ \sf :  \implies \: at \:    \omega_{1} \:  \:  \: and \:  \:  \:   \omega_{2} \:  =  \: half \: power \: frequency

\sf :  \implies \:  i_{0} =  \dfrac{  \epsilon_{0} }{z}  \\  \\  \sf :  \implies \:  i_{0} \:  =   \frac{  \epsilon_{0} }{ \sqrt{R {}^{2} + (  x_{l} \:  -  \:  x_{c}) {}^{2}  } } \\  \\  \sf :  \implies  \:  i_{0} \:  =  \frac{   \epsilon_{0}}{ \sqrt{R {}^{2}  + (  \omega_{l} -  \dfrac{1}{  \omega_{c} } ) {}^{2} } }  \\  \\ \sf :  \implies \: at \: these \: frequency \:  \implies \: p \:  =  \frac{ p_{max} }{2} \\  \\  \sf :  \implies \:  i_{0} \:  =  \frac{  l_{0} {max}}{2}  \implies \:  =  \frac{   \epsilon_{0} }{R \sqrt{2} }

 \sf :  \implies \:  \dfrac{   \epsilon_{0} }{R \sqrt{2} } =  \dfrac{  \epsilon_{0} }{ \sqrt{R {}^{2} + (  \omega_{l} \:  -   \dfrac{1}{ \omega_{c} }) {}^{2}    } } \\  \\  \sf :  \implies \:  =   R {}^{2} + ( \omega_{l} \:  -  \frac{1}{  \omega_{c} }) {}^{2} = 2R {}^{2} \\  \\ \sf :  \implies \: ( \omega \: l \:  -  \:  \frac{1}{ \omega \: c} ) {}^{2}  = R {}^{2}

 \sf :  \implies \: ( \omega \: l \:  -  \dfrac{1}{ \omega \: c} ) =  \pm  R \\  \\  \sf :  \implies  \:   \omega_{1}l \:  -  \frac{1}{  \omega_{1}c }  =  - R \:  \:  \: .(1) \\  \\ \sf :  \implies \: \omega_{2}l \:  -  \frac{1}{  \omega_{2}c }  =   +  R \:  \:  \: .(2) \\  \\ \sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get

 \\  \\ \sf :  \implies adding \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get \:  \:  \\  \\ \sf :  \implies \: (  \omega_{1} \:  +   \omega_{2})l \:  -   \dfrac{1}{c} ( \dfrac{1}{  \omega_{1}}  +  \dfrac{1}{  \omega_{2}} ) = 0 \\  \\ \sf :  \implies \:  (  \omega_{1} \:  +   \omega_{2})l   \: -  \:  \frac{1}{c} ( \frac{  \omega_{2} \:  +  \:   \omega_{1}  }{ \omega_{1}  \omega_{2} } ) = 0 \\  \\ \sf :  \implies \: l \:  =  \frac{1}{c  \omega_{1} \omega_{2}  }

\sf :  \implies  \: subtract \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get \\  \\ \sf :  \implies  \: (  \omega_{2} \:  -   \omega_{1})l  \:  -  \frac{1}{ \omega_{2}c \:  }  +  \frac{1}{  \omega_{1}c }  = 2R \\  \\ \sf :  \implies \: (  \omega_{2} \:  -   \omega_{1})l \:  \:  +  \:  \:  \frac{1}{c}( \frac{1}{  \omega_{1} \: }   -  \frac{1}{  \omega_{2} }  ) = 2R \\  \\ \sf :  \implies \: (  \omega_{2} \:  -   \omega_{1})l \:  \:  +  \:  \:  \frac{1}{c}  ( \frac{  \omega_{2} \:  -  \:    \omega_{1}  }{  \omega_{1}  \omega_{2} } ) = 2R

 \sf :  \implies \: (  \omega_{2} \:  -  \:   \omega_{1}) \:  \: (l   +  \dfrac{1}{c  \omega_{1}  \omega_{2}} ) = 2R \\  \\ \sf :  \implies \: (  \omega_{2} \:  -   \omega_{1} \: ) \: (l \:  +  \: l) = 2R \\  \\ \sf :  \implies  \: (  \omega_{2} \:  -   \omega_{1}) \: (2l) = 2R \\  \\ \sf :  \implies \:  \orange{ \underline{ \underline{(  \omega_{2} \:  -  \:   \omega_{1}) =  \frac{R}{l} \:  \:  \implies \: hence \:  \: proved }}}

Hope it helps

#Be brainly

Similar questions