Math, asked by Anonymous, 1 month ago

=> Don't Spam
=> Right Answer=Brainliest

EVALUATE

\huge{ \boxed { \boxed{\bold \red{ \displaystyle \lim_{x \to 1} - \dfrac{x - 4}{ {x}^{2} - 6x + 8 }}}}}

Answers

Answered by Aryan0123
64

Solution:

First let's understand the concept applied in solving this question.

\\

Concept used:

✯ In such questions substitute the value where the limit is tending to in the expression. Then we will get the value of this expression.

➵ But note that if the value after substitution comes to be in the form of 0/0 or ∞/∞ form, then apply L'hospital rule.

\\

Step-by-step explanation:

\boldsymbol{ \lim_{{x}  \to 1 \:}  -  \bigg( \dfrac{x - 4}{ {x}^{2} - 6x + 8 }} \bigg) \\  \\

On substituting the limits,

 \implies \sf{ -  \bigg( \dfrac{1 - 4}{ {1}^{2} - 6(1) + 8 } \bigg) } \\  \\

 \implies \sf{ -  \bigg( \dfrac{ - 3}{1 - 6 + 8}  \bigg)} \\  \\

 \implies \sf{ -  \bigg( \dfrac{ - 3}{3}  \bigg) } \\  \\

 \implies \sf{ - ( - 1)} \\  \\

 = 1 \\  \\

 \therefore \:  \boxed{ \bf{ \lim_{x \to  1} - \bigg( \dfrac{x - 4}{ {x}^{2}  - 6x + 8 }  \bigg) = 1}} \\  \\

Answered by Sahan677
10

\bold \red{ \displaystyle \lim_{x \to 1} - \dfrac{x - 4}{ {x}^{2} - 6x + 8 }}

\bold \red{ \displaystyle \lim_{x \to 1} \dfrac{4 - x}{ {x}^{2} - 6x + 8 }}

Substitute the variable with the value:

\bold \red{ \displaystyle \lim_{x \to 1} \dfrac{4 - x}{ {x}^{2} - 6x + 8 }} = 1

Therefore,

\bold \red{ \displaystyle \lim_{x \to 1} \dfrac{4 - x}{ {x}^{2} - 6x + 8 }} = 1

Answer:

\bold \red{ \displaystyle \lim_{x \to 1} \dfrac{4 - x}{ {x}^{2} - 6x + 8 }} = 1

Similar questions