Math, asked by chandrakushagra18, 11 months ago

>
ed
Sf. If y=e" + x +ex, prove that is er *e*. log x }
+ zem.com intet . log x +et* x.34-/1 +e log xl
.​

Answers

Answered by esfas
0

Answer:

Very simple

Step-by-step explanation:

Proof :

\\ \\ x^{2} x^{2} \geq \geq \int\limits^a_b {x} \, dx  \lim_{n \to \infty} a_n  \lim_{n \to \infty} a_n \pi \sqrt[n]{x} \f\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \geq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \beta x_{123} \leq \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \int\limits^a_b {x} \,

Hence prooved

Similar questions