=> Moderators.
=> Brainly Stars.
=> Brainly Top Users.
Solve the differential equation below:
Answers
Question:-
Solve the differential equation below:
(x² + y²)dx – xy dy = 0
Given:-
- (x² + y²)dx – xy dy = 0.
To Solve:-
- The differential equation given below: (x² + y²)dx – xy dy = 0.
Solution:-
(x² + y²)dx – xy dy = 0.
⇒ (x² + y²)dx = xy dy.
Let, y = vx
Answer:-
Hope you have satisfied. ⚘
Question:-
Solve the differential equation below:
(x² + y²)dx – xy dy = 0
Given:-
(x² + y²)dx – xy dy = 0.
To Solve:-
The differential equation given below: (x² + y²)dx – xy dy = 0.
Solution:-
(x² + y²)dx – xy dy = 0.
⇒ (x² + y²)dx = xy dy.
\sf \large ⇒ \frac{dy}{dx} = \frac{x {}^{2} + y {}^{2} }{xy} \: \: \: ...(i)⇒
dx
dy
=
xy
x
2
+y
2
...(i)
Let, y = vx
\begin{gathered} \sf \large \therefore \frac{dy}{dx} = v + x \frac{dv}{dx} \\ \\ \sf \large \therefore v + x \frac{dv}{dx} = \frac{x {}^{2} + v {}^{2} x {}^{2} }{x {}^{2} v} = \frac{1 + v {}^{2} }{v} \\ \\ \sf \large \therefore x \frac{dv}{dx} = \frac{1{{ \cancel{ + v {}^{2}}}}{{ \cancel{ - v {}^{2} }}}}{v} = \frac{1}{v} \\ \\ \sf \large \therefore xdv = \frac{1}{v} \: dx\end{gathered}
∴
dx
dy
=v+x
dx
dv
∴v+x
dx
dv
=
x
2
v
x
2
+v
2
x
2
=
v
1+v
2
∴x
dx
dv
=
v
1
+v
2
−v
2
=
v
1
∴xdv=
v
1
dx
\begin{gathered} \sf \large⇒ \int \frac{dx}{x} = \int v \: \: dv \\ \\ \sf \large⇒ log \: x = \frac{v {}^{2} }{2} + c \\ \\ \sf \large ⇒ log \: x = \frac{y {}^{2} }{2x {}^{2} } + c \\ \\ \sf \large⇒y {}^{2} + c = 2x {}^{2} log \: x \\ \\ \sf \large ⇒y {}^{2} = x {}^{2} log \: x {}^{2} c\end{gathered}
⇒∫
x
dx
=∫vdv
⇒logx=
2
v
2
+c
⇒logx=
2x
2
y
2
+c
⇒y
2
+c=2x
2
logx
⇒y
2
=x
2
logx
2
c
Answer:-
\sf \large \color{red}⇒y {}^{2} = x {}^{2} log \: x {}^{2} c.⇒y
2
=x
2
logx
2
c.