Math, asked by Dare82500, 20 days ago

=> Moderators.
=> Brainly Stars.
=> Brainly Top Users.

Solve the differential equation below:

 \sf \large (x {}^{2}  + y {}^{2} )dx - xy \: dy = 0.

Answers

Answered by XxitzZBrainlyStarxX
6

Question:-

Solve the differential equation below:

(x² + y²)dx – xy dy = 0

Given:-

  • (x² + y²)dx – xy dy = 0.

To Solve:-

  • The differential equation given below: (x² + y²)dx – xy dy = 0.

Solution:-

(x² + y²)dx – xy dy = 0.

⇒ (x² + y²)dx = xy dy.

 \sf \large ⇒ \frac{dy}{dx}  =  \frac{x {}^{2}  + y {}^{2} }{xy}  \:  \:  \: ...(i)

Let, y = vx

 \sf \large \therefore \frac{dy}{dx}  = v + x \frac{dv}{dx}  \\  \\  \sf \large \therefore v + x \frac{dv}{dx}  =  \frac{x {}^{2} + v {}^{2} x {}^{2}  }{x {}^{2} v}  =  \frac{1 + v {}^{2} }{v}  \\  \\  \sf \large \therefore x \frac{dv}{dx}  =  \frac{1{{ \cancel{ + v {}^{2}}}}{{ \cancel{  - v {}^{2} }}}}{v}  =  \frac{1}{v}  \\  \\  \sf \large \therefore xdv =  \frac{1}{v}  \: dx

  \sf \large⇒ \int \frac{dx}{x}  =  \int v \:  \: dv \\  \\  \sf \large⇒ log \: x =  \frac{v {}^{2} }{2}  + c \\  \\  \sf \large ⇒ log \: x =  \frac{y {}^{2} }{2x {}^{2} }  + c \\  \\  \sf \large⇒y {}^{2}  + c = 2x {}^{2} log \: x  \\  \\   \sf \large ⇒y {}^{2}  = x {}^{2} log \: x {}^{2} c

Answer:-

 \sf \large \color{red}⇒y {}^{2}  = x {}^{2} log  \: x {}^{2} c.

Hope you have satisfied.

Answered by ᏟɛƖΐᴎɛ
0

Question:-

Solve the differential equation below:

(x² + y²)dx – xy dy = 0

Given:-

(x² + y²)dx – xy dy = 0.

To Solve:-

The differential equation given below: (x² + y²)dx – xy dy = 0.

Solution:-

(x² + y²)dx – xy dy = 0.

⇒ (x² + y²)dx = xy dy.

\sf \large ⇒ \frac{dy}{dx} = \frac{x {}^{2} + y {}^{2} }{xy} \: \: \: ...(i)⇒

dx

dy

=

xy

x

2

+y

2

...(i)

Let, y = vx

\begin{gathered} \sf \large \therefore \frac{dy}{dx} = v + x \frac{dv}{dx} \\ \\ \sf \large \therefore v + x \frac{dv}{dx} = \frac{x {}^{2} + v {}^{2} x {}^{2} }{x {}^{2} v} = \frac{1 + v {}^{2} }{v} \\ \\ \sf \large \therefore x \frac{dv}{dx} = \frac{1{{ \cancel{ + v {}^{2}}}}{{ \cancel{ - v {}^{2} }}}}{v} = \frac{1}{v} \\ \\ \sf \large \therefore xdv = \frac{1}{v} \: dx\end{gathered}

dx

dy

=v+x

dx

dv

∴v+x

dx

dv

=

x

2

v

x

2

+v

2

x

2

=

v

1+v

2

∴x

dx

dv

=

v

1

+v

2

−v

2

=

v

1

∴xdv=

v

1

dx

\begin{gathered} \sf \large⇒ \int \frac{dx}{x} = \int v \: \: dv \\ \\ \sf \large⇒ log \: x = \frac{v {}^{2} }{2} + c \\ \\ \sf \large ⇒ log \: x = \frac{y {}^{2} }{2x {}^{2} } + c \\ \\ \sf \large⇒y {}^{2} + c = 2x {}^{2} log \: x \\ \\ \sf \large ⇒y {}^{2} = x {}^{2} log \: x {}^{2} c\end{gathered}

⇒∫

x

dx

=∫vdv

⇒logx=

2

v

2

+c

⇒logx=

2x

2

y

2

+c

⇒y

2

+c=2x

2

logx

⇒y

2

=x

2

logx

2

c

Answer:-

\sf \large \color{red}⇒y {}^{2} = x {}^{2} log \: x {}^{2} c.⇒y

2

=x

2

logx

2

c.

Similar questions