Math, asked by yashsavita59, 9 months ago

Guinen that tan a -5/12 and angle
q is a acute angle find sin q and col q​

Answers

Answered by Chayan12
1

Given:-  \\   \tan(A)  \:  =  \:  \frac{ - 5}{12}  \\ To \: Find:- \\  \sin(Q)  \\  \cos(Q)  \\  \tan(Q)  \\  \sec(Q)  \\  \csc(Q)  \\  \cot(Q)  \\  Let \: a \: triangle \: ∆ABQ \: right \: angled \: at \: B \\ therefore, \: QB \:  =  \:  12 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB \:  =  \: - 5 \\ using \: pythagoras \: theo. \: we \: get,  \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AQ \:  =  \: 13 \\ now \\  \sin(Q)  \:  =  \:   \frac{ - 5}{13}  \\  \cos(Q)  \:  =  \:  \frac{12}{13}  \\  \tan(Q) \:  =  \:  -  \frac{12}{5}   \\  \sec(Q)  \:  =  \:   \frac{13}{12}  \\   \csc(Q)  \:  =  \:  \frac{13}{ - 5}  \\  \cot(Q)  \:  =  \:  \frac{ - 5}{12}  \\  \\  \\  \\ hope \: it \: helps.................. \\ plz \: mark \: as \: brainliest.....................

Answered by nmchopra
0

Answer:

Sin Q = 5/13, Cos Q = 12/13

Step-by-step explanation:

Given : Tan Q = 5/12

Tan Q = PR/QR = 5x/12x

If ΔPQR is taken with the right angle being R, (as shown)

then using Pythagoras theorem, we get PQ² = PR² + QR²

PQ² = (5x)² + (12x)² = 25x² + 144x² = 169x²

∴ PQ = 13x

Now, Sin Q = PR/PQ = 5x/13x

Sin Q = 5/13

Cos Q = QR/PQ = 12x/13x

Cos Q = 12/13

Attachments:
Similar questions