Math, asked by sanghpriyaraj, 1 month ago

Güven 15 cot A s. find sin A and Sec A.​

Answers

Answered by Anonymous
0

 \bold{Given,}

 \bold{15cotA=8}

 \bold{cotA =  \frac{8}{5} }

 \bold{=> tanA= \frac{15}{8}  -  -  - ( \tan \: A =  \frac{1}{ \cot \:A  }) }

We know that,

  \bold{\tan \theta =  \frac{opposite \: side}{adjecent \: angle} }

Consider the attached figure, triangleABC

Consider the attached figure, triangleABCFrom Pythagoras theorem,

 \bold{AC^2=AB^2+BC^2}

  \small\bold{AC^2=8^2+15^2=  {8}^{2} + 225 =289 }

 \bold{AC=17}

  \bold{\cos \: A \:  \frac{adjecent}{hypoteneuse} }

  \bold{\sec \: A=  \frac{1}{ \cos \:A}  =  \frac{ \frac{1}{8} }{17}  \frac{17}{8} }

  \bold{\sin \: A =  \frac{opposite \: side}{hypotenuse}  =  \frac{BC}{AC}  =  \frac{15}{17} }

Attachments:
Similar questions