Math, asked by TraptiBadnagre, 7 months ago

Guy solve this also please.....​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{dx}{3 + 2 \cos(x) }

 =  \int \frac{dx}{3 + 2( \frac{1 -  \tan^{2} ( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2}  ) }) }

 =  \int \frac{(1 +  \tan^{2} ( \frac{x}{2} ) )dx}{5 +  \tan^{2} ( \frac{x}{2} ) }

 =  \int \frac{ \sec^{2} ( \frac{x}{2} ) dx}{5 +  \tan^{2} ( \frac{x}{2} ) }

Let tan(x/2) = t

=> 1/2•sec²(x/2) dx = dt

=> sec²(x/2) dx = 2dt

 = 2 \int \frac{dt}{ {t}^{2} +   { (\sqrt{5} )}^{2}   }

 = 2. \frac{1}{ \sqrt{5} }  \tan^{ - 1} ( \frac{t}{ \sqrt{5} } ) + c

 =  >  \frac{2}{ \sqrt{5} }  \tan^{ - 1} ( \frac{ \tan( \frac{x}{2} ) }{ \sqrt{5} }  )  + c

Similar questions