Math, asked by bhumikads336, 2 months ago

guys answer to this plz​

Attachments:

Answers

Answered by Anonymous
29

Given -

  • \displaystyle{\sf{2^{\frac{2}{3}} . 2^{\frac{1}{3}}}}

Solution -

We can solve this exponential problem by using the given identity

  • \bf{\red{a^x . a^y = a^{x + y}}}

\tt{\longrightarrow{2^{\frac{2}{3}} . 2^{\frac{1}{3}}}}

\tt{\longrightarrow{2^{\frac{2}{3} + \frac{1}{3}}}}

\tt{\longrightarrow{2^{\frac{2 + 1}{3}}}}

\tt{\longrightarrow{2^{\frac{3}{3}}}}

\tt{\longrightarrow{2^1}}

\bf{\longrightarrow{\purple{2}}}

Hence,

  • The required value is 2.

━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
0

Answer:

Given -

\displaystyle{\sf{2^{\frac{2}{3}} . 2^{\frac{1}{3}}}}2

3

2

.2

3

1

Solution -

We can solve this exponential problem by using the given identity

\bf{\red{a^x . a^y = a^{x + y}}}a

x

.a

y

=a

x+y

\tt{\longrightarrow{2^{\frac{2}{3}} . 2^{\frac{1}{3}}}}⟶2

3

2

.2

3

1

\tt{\longrightarrow{2^{\frac{2}{3} + \frac{1}{3}}}}⟶2

3

2

+

3

1

\tt{\longrightarrow{2^{\frac{2 + 1}{3}}}}⟶2

3

2+1

\tt{\longrightarrow{2^{\frac{3}{3}}}}⟶2

3

3

\tt{\longrightarrow{2^1}}⟶2

1

\bf{\longrightarrow{\purple{2}}}⟶2

Hence,

The required value is 2.

━━━━━━━━━━━━━━━━━━━━━━

Step-by-step explanation:

thanks Venomnobita

Similar questions