Math, asked by Anonymous, 10 months ago

Guys! As we all know that . . . Sin^2 A + cos^2 A = 1 . . So , Sin^2 A = 1- cos^2 A Is it possible that Sin A = 1 - cos A if yes then prove it

Answers

Answered by bhupeshdhil23
1

Answer:

No

Step-by-step explanation:

No, It's impossible. The math masters can't prove this.

You can see

sina = 1-cosa a = 30*

sin30 = 1- cos 30

1/2 = 1-√3/2

it's not possible bro!!!!!!

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

Whether it is possible to Find A such that

sinA = 1 - cosA

EVALUATION

Yes it is possible to Find A such that

sinA = 1 - cosA

EXPLANATION

sinA = 1 - cosA

 \implies \: sinA  +  cosA = 1

 \implies \:   \displaystyle \: \dfrac{1}{ \sqrt{2} } sinA  +   \frac{1}{ \sqrt{2} } cosA = \frac{1}{ \sqrt{2} }  \:  \: .....(1)

 \implies \:   \displaystyle \:  sinA  \: cos \:  {45}^{ \circ}  +  cosA   \: cos \:  {45}^{ \circ}: = sin \:  {45}^{ \circ}

 \implies \:   \displaystyle \:  sin(A   +   {45}^{ \circ} ) =  sin   {45}^{ \circ}

 \implies \:   \displaystyle \:  (A   +   {45}^{ \circ} ) =    {45}^{ \circ}

 \implies \:   A    =    {0}^{ \circ}

Again from (1)

 \implies \:   \displaystyle \:  cosA  \: cos \:  {45}^{ \circ}  +  sinA   \: cos \:  {45}^{ \circ}: = cos \:  {45}^{ \circ}

 \implies \:   \displaystyle \:  cos(A  \: -   {45}^{ \circ} ) = cos \:  {45}^{ \circ}

 \implies \:   \displaystyle \:  (A  \: -   {45}^{ \circ} ) =  \:  {45}^{ \circ}

 \implies \:   \displaystyle \:  A  \ = cos \:  {90}^{ \circ}

RESULT

 \red {\fbox{THE REQUIRED VALUE OF A IS 0° , 90°}}

Similar questions