guys can someone prove demoivre's theorem
Answers
Answered by
1
Answer:
De Moivre’s Theorem Proof
Apply Mathematical Induction to prove De Moivre’s Theorem.
We know, (cos x + i sin x)n = cos(nx) + i sin(nx) …(i)
Step 1: For n = 1, we have
(cos x + i sin x)1 = cos(1x) + i sin(1x) = cos(x) + i sin(x)
Which is true.
Step 2: Assume that formula is true for n = k.
(cos x + i sin x)k = cos(kx) + i sin(kx) ….(ii)
Step 3: Prove that result is true for n = k + 1.
(cos x + i sin x)k+1 = (cos x + i sin x)k (cos x + i sin x)
= (cos (kx) + i sin (kx)) (cos x + i sin x) [Using (i)]
= cos (kx) cos x − sin(kx) sinx + i (sin(kx) cosx + cos(kx) sinx)
= cos {(k+1)x} + i sin {(k+1)x}
=> (cos x + i sin x)k+1 = cos {(k+1)x} + i sin {(k+1)x}
Hence the result is proved.
Similar questions