Math, asked by xxBadboyxx, 4 months ago

guys find the answer​

Attachments:

Answers

Answered by ashrayamanna
1

Answer:

Q12 ans 9cm×3cm

27m^2

Q13 ans 4cm×4cm

16cm^2

Answered by Anonymous
239

Answer:

 \large \star \:\underline{ \sf \pmb{Question.1}}

Find the area of Rectangle with lenght = 9 cm and Breadth = 3 cm.

 \large \star \: \underline{\sf {\pmb{Given}}}

  • ➥ Lenght of Rectangle = 9 cm

  • ➥ Breadth of Rectangle = 3 cm

\large \star \: \underline{\sf \pmb{To  \: Find }}

  • ➥ Area of Rectangle

  \large \star \: \underline{\sf \pmb{Using \: Formula }}

\underline{ \boxed{\sf{Rectangle_{(Area)} = Length  \times  Breadth}}}

  \large \star \: \underline{\sf \pmb{Solution}}

 {\implies \: \sf{Rectangle_{(Area)} = Length  \times  Breadth}}

  • Substituting the values

{ \implies{\sf{Rectangle_{(Area)} =9 \: cm \times 3 \: cm}}}

{ \implies{\sf{Rectangle_{(Area)}  = 27 \:  {cm}^{2} }}}

 \:  \: \underline{\boxed {\mathsf \purple{Area \:  of  \: Rectangle = 27 \:  {cm}^{2}}}}

 \large \star \: \underline{\sf  \pmb{Diagram }}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 9 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 3 cm}\put(-0.5,-0.4){\bf }\put(-0.5,3.2){\bf }\put(5.3,-0.4){\bf }\put(5.3,3.2){\bf }\end{picture}

 \large \star \: \underline{\sf {\pmb{Therefore}}}

  • The Area of Rectangle is 27cm²

━━━━━━━━━━━━━━━

  \large \star \: \underline{\sf \pmb{Question.2}}

Find the Area of Square with side 4 cm.

 \large \star \: \underline{\sf {\pmb{Given}}}

  • ➥ Side of Square = 4 cm

\large \star \: \underline{\sf \pmb{To  \: Find }}

  • ➥ Area of Square

  \large \star \: \underline{\sf \pmb{Using \: Formula }}

{\underline{\boxed{\sf{Square_{(Area)} =  {a}^{2}}}}}

Where

  • Side of Square

 \large \star \: \underline{\sf  \pmb{Solution }}

 \implies{\sf{Square_{(Area)} =  {a}^{2}}}

  • Substituting the values

\implies{\sf{Square_{(Area)} =  {(4 \:  cm)}^{2}}}

\implies{\sf{Square_{(Area)} =4 \times 4 }}

\implies{\sf{Square_{(Area)} =16 \: {cm}^{2}  }}

 \:  \: \underline{\boxed{\sf \purple{Square_{(Area)} = 16 \:  {cm}^{2} }}}

 \large \star \: \underline{\sf  \pmb{Diagram }}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 4\ cm}\put(4.4,2){\bf\large 4\ cm}\end{picture}

 \large \star \: \underline{\sf  \pmb{Therefore}}

  • The Area of Square is 16 cm².

━━━━━━━━━━━━━━━

 \large \star \: \underline{\sf  \pmb{Additional \:  Information}}

\begin{gathered}\begin{gathered}\small\begin{gathered}\begin{gathered} \bigstar \: \bf \underline{More \: Useful \: formulae} \: \bigstar\\ \begin{gathered} \\ {\boxed{\begin{array}{cccc} \\ {\displaystyle \star\sf{Perimeter \: of \: Triangle }} = \sf{Length +Breadth + Height} \\ \\ \star\sf{Area \: of \: Rectangle = Lenght×Breadth} \\ \\ {\star\small\sf{Perimeter \: of\: Rectangle = 2(Length + Breadth)}} \\ \\ {\star\small \sf{Diagonal \: of \: Rectangle = \sqrt{ {Length }^{2} + { Breadth}^{2} }}} \\ \\ \star\small\sf{Perimeter \: of \: Square = 4a } \\ \\ \star\small\sf{Diagonal \: of \: Square = a \sqrt{2} }\end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions