guys help me to solve this...
(i) If sin 0 + sin2 0 = 1, prove that cos0 + cos4 = 1
Answers
Answered by
3
sinA + sin²A = 1
sinA = 1 - sin²A
sinA = cos²A ... (i) (sin²A + cos²A = 1)
now,
RHS
= 1
LHS
= cos²A + cos⁴A
= cos²A + (cos²A)²
= cos²A + (sinA)² ... (from i)
= cos²A + sin²A
= 1
= RHS
LHS = RHS
Hence, cos²A + cos⁴A = 1
Answered by
1
Step-by-step explanation:
Given Equation is sinθ + sin²θ = 1
[∵ sin²θ + cos²θ = 1 → sin²θ = 1 - cos²θ]
=> sinθ + 1 - cos²θ = 1
⇒ sinθ - cos²θ = 1 - 1
⇒ sinθ - cos²θ = 0
⇒ sinθ = cos²θ
On Squaring both sides, we get
(sinθ)² = (cos²θ)²
⇒ sin²θ = cos⁴θ
⇒ 1 - cos²θ = cos⁴θ
⇒ cos²θ + cos⁴θ = 1
Hope it helps!
Similar questions