Math, asked by Anonymous, 8 months ago

GUYS NEED HELP VERY URGENTTT

Attachments:

Answers

Answered by singhmanikant427
0

  • This is the answer by rationalisation.
Attachments:
Answered by TooFree
3

Given:

\dfrac{3 - \sqrt{5} }{3 + 2\sqrt{5} }  = a\sqrt{5}  - b

\\

To Find:

The value of a and b

\\

Solution:

\dfrac{3 - \sqrt{5} }{3 + 2\sqrt{5} }  = a\sqrt{5}  - b

\\

LHS:

\dfrac{3 - \sqrt{5} }{3 + 2\sqrt{5} }

= \dfrac{(3 - \sqrt{5})(3 - 2\sqrt{5})}{(3 + 2\sqrt{5})(3 - 2\sqrt{5})}

= \dfrac{9 - 6\sqrt{5} - 3\sqrt{5} + 10  }{(3)^2 - (2\sqrt{5})^2 }

= \dfrac{19 - 9\sqrt{5} }{9 - 20}

= \dfrac{19 - 9\sqrt{5} }{-13}

= - \dfrac{19}{13}  + \dfrac{9\sqrt{5}}{13}

= \dfrac{9}{13}\sqrt{5}   - \dfrac{19}{13}

\\

Comparing LHS and RHS:

\dfrac{3 - \sqrt{5} }{3 + 2\sqrt{5} }  = a\sqrt{5}  - b

\dfrac{9}{13}\sqrt{5}   - \dfrac{19}{13} = a\sqrt{5} - b

\\

Find the value of a and b:

a = \dfrac{9}{13}

b = \dfrac{19}{13}

\\

Answer: a = 9/13 and b = 19/13

Similar questions