Physics, asked by iamunnatibeherp8azz9, 7 months ago

guys please and this two questions as soon as possible​

Attachments:

Answers

Answered by Anonymous
58

\underline{\rm\red{Question :}}

If the percentage error in the measurement of side of cube is 2% , then the percentage error in its volume and area are -

━━━━━━━━━━━━

\underline{\rm\red{Answer - }}

\underline{\rm\pink{Given}} -

\impliesPercentage error in side = \rm  \dfrac{\Delta s}{s}  = 2\%

\underline{\rm\pink{To\: find - }}

Percentage error in volume and area

\underline{\rm\pink{Solution -}}

\rm Volume = s^3

Percentage error in volume = 3 ( Percentage error in each side )

\implies\rm \dfrac{\Delta v}{v} = 3 \dfrac{\Delta s}{s}

\implies\rm \dfrac{\Delta v}{v} = 3 \times 2\%

\implies\rm \dfrac{\Delta v}{v} = 6\%

\underline{\underline{\sf\purple{Percentage \:error\: in \:Volume = 6\%}}}

━━━━━━━━━━━━

\rm Area = s^2

Percentage error in area = 2 ( Percentage error in each side )

\implies\rm \dfrac{\Delta a}{a} = 2 \dfrac{\Delta s}{s}

\implies\rm \dfrac{\Delta a}{a} = 2 \times 2\%

\implies\rm \dfrac{\Delta a}{a} = 4\%

\underline{\underline{\sf\purple{Percentage \:error \:in \:Area = 4\%}}}

━━━━━━━━━━━━

\underline{\rm\red{Question - }}

The distance covered by particles varies with the time as \rm x = at^2 - bt^3 , the time of body when acceleration is zero is

━━━━━━━━━━━━

\underline{\rm\red{Answer - }}

\underline{\rm\pink{Given - }}

\rm x = at^2 - bt^3

\underline{\rm\pink{To\: find - }}

Time at acceleration = 0

\underline{\rm\pink{Solution -}}

Acceleration is given by -

\rm a = \dfrac{d^2x}{dt^2}

━━━━━━━━━━━━

By double differnetiation of equation and then equating it to 0 will give the value of time -

\implies\rm \dfrac{dx}{dt} = \dfrac{d( {at}^{2} -  {bt}^{3}) }{dt}

\implies\rm \dfrac{dx}{dt} = 2at  - 3b {t}^{2}

━━━━━━━━━━━━

\implies\rm \dfrac{d^2x}{dt^2} = \dfrac{d( 2at - 3bt^2) }{dt}

\implies\rm \dfrac{d^2x}{dt^2} = 2a - 6bt

━━━━━━━━━━━━

\implies\rm a = \dfrac{d^2x}{dt^2} = 2a - 6bt

\implies\rm 2a - 6bt = 0

\implies\rm 6bt = 2a

\implies\rm 3bt = a

\implies\rm t = \dfrac{a}{3b}

\underline{\underline{\sf\purple{Time \:when \:acceleration\: is \:zero = \dfrac{a}{3b}}}}

━━━━━━━━━━━━

Similar questions