Math, asked by EnchantedBoy, 9 months ago

Guys please answer.......... ​

Attachments:

Answers

Answered by shadowsabers03
13

Given,

\longrightarrow x^2+y^2=3xy

Adding 2xy to both sides,

\longrightarrow x^2+y^2+2xy=3xy+2xy

\longrightarrow (x+y)^2=5xy

Taking logarithm on both sides,

\longrightarrow \log\left[(x+y)^2\right]=\log(5xy)\quad\quad\dots(1)

We have,

  • \log(a^b)=b\log a
  • \log(ab)=\log a+\log b

Thus (1) becomes,

\longrightarrow\underline{\underline{2\log(x+y)=\log 5+\log x+\log y}}

Logarithmic Identities,

\longrightarrow\log(ab)=\log a+\log b

\longrightarrow\log\left(\dfrac{a}{b}\right)=\log a-\log b

\longrightarrow\log(a^b)=b\log a

\longrightarrow\log_ba=\dfrac{\log_ma}{\log_mb},\quad b\neq1

\longrightarrow a^b=m^{b\log_ma}

Answered by yashaswini3679
27

Step-by-step explanation:

Given,

+ = 3xy

Add 2xy on both sides

+ + 2xy = 3xy + 2xy

(x + y)² = 5xy

Add log on both sides

log (x + y)² = log 5xy

2 log (x + y) = log 5 + log x + log y

Hence, proved.

Formulae applied here :

 \to a² + b² + 2ab = (a + b)²

 \to log x^m = m log x

\to log xy = log x + log y

Similar questions