Math, asked by sammyboy2005, 9 months ago

Guys please answer this...I will mark as brainliest....plz dont spam anything...plz...tomorrow exam is there...plz​

Attachments:

Answers

Answered by adityabhandari05
0

Answer:

hey bro the picture is looking blur

Answered by senboni123456
1

Step-by-step explanation:

we have,

  \cos(2 \alpha )  = 1 - 2 \sin^{2} ( \alpha )

 =  > 2 \sin^{2} ( \alpha )  = 1 -  \cos( 2\alpha )

 =  >  \sin( \alpha )  =  \sqrt{ \frac{1 -  \cos(2 \alpha ) }{2} }  \: ......(i)

Now, we know that,

 \cos( \alpha  -   \beta  )   = \cos( \alpha )  \cos( \beta )   +    \sin( \alpha )  \sin( \beta )

So,

 \cos( \frac{\pi}{4}  -  \frac{\pi}{6} )  =  \cos( \frac{\pi}{4} )  \cos( \frac{\pi}{6} )   +   \sin( \frac{\pi}{4} )  \sin(\frac{\pi}{6})

 =  >  \cos( \frac{\pi}{12} )  =  \frac{1}{ \sqrt{2} } . \frac{ \sqrt{3} }{2}   +   \frac{1}{ \sqrt{2} }. \frac{1}{2}

 =  >  \cos( \frac{\pi}{12} )  =  \frac{ \sqrt{3}  + 1 }{2 \sqrt{2} }

From (i), putting α= π/24, we get,

 \sin( \frac{\pi}{24} )  =  \sqrt{ \frac{1 -  \cos( \frac{\pi}{12} ) }{2} }

 =  >  \sin( \frac{\pi}{24} )  =  \sqrt{ \frac{1 -  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} } }{2} }

 =  >  \sin( \frac{\pi}{24} ) =  \sqrt{ \frac{2 \sqrt{2}  -  \sqrt{3}  - 1}{4 \sqrt{2} } }

Here, π/24= (15/2)°

Similar questions