Math, asked by brainlyarmy81, 6 months ago

guys Please answer this, it's urgent.....​

Attachments:

Answers

Answered by Anonymous
7

(a) Solution:

=>  \frac{1}{ \sqrt{7} + \: \sqrt{5}}

=>  \frac{1}{ \sqrt{7}  +  \sqrt{5} }  \times  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} }

=>  \frac{ \sqrt{7} -  \sqrt{5}  }{( \sqrt{7}) ^{2} -  (\sqrt{5})^{2}} [By using the identity (a+b)(a-b) = a² - b² ]

=>  \frac{ \sqrt{7} -  \sqrt{5}}{7 - 5}  =  \frac{ \sqrt{7} -  \sqrt{5} \: }{2}

Hence, \:  \frac{ \sqrt{7} -  \sqrt{5}}{2}  \: is \: your \: answer

Answered by Anonymous
9

(a) Solution:

=>  \frac{1}{ \sqrt{7} + \: \sqrt{5}}

=>  \frac{1}{ \sqrt{7}  +  \sqrt{5} }  \times  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} }

=>  \frac{ \sqrt{7} -  \sqrt{5}  }{( \sqrt{7}) ^{2} -  (\sqrt{5})^{2}} [ By using the identity (a+b)(a-b) = a² - b² ]

=>  \frac{ \sqrt{7} -  \sqrt{5}}{7 - 5}  =  \frac{ \sqrt{7} -  \sqrt{5} \: }{2}

Hence, \:  \frac{ \sqrt{7} -  \sqrt{5}}{2}  \: is \: your \: answer

(b) Solution:

by using the exponent rule that is a^{n}  + a^{m}  = a^{n + m}

we get:

=> ( {2}^{ \frac{4}{3} })( {2}^{ \frac{3}{5} } ) =  {2}^{ \frac{4}{3}  +  \frac{3}{5} }

taking LCM we get,

=>  {2}^{ \frac{20 + 9}{3 \times 5} }  =  {2}^{ \frac{29}{15} }

Hence, \: ( {2}^{ \frac{29}{15} } ) \: is \: your \: answer

_

At last (╥﹏╥)

I had to answer from this ID (╥﹏╥)

Similar questions