Guys please answer this question
Answers
Answer :
1st Option : (2 - √3)/2
Note:
★ sin(A + B) = sinA•cosB + cosA•sinB
★ sin(A – B) = sinA•cosB – cosA•sinB
★ cos(A + B) = cosA•cosB – sinA•sinB
★ cos(A – B) = cosA•cosB + sinA•sinB
★ sin(A + B) + sin(A – B) = 2sinA•cosB
★ sin(A + B) – sin(A – B) = 2cosA•sinB
★ cos(A + B) + cos(A – B) = 2cosA•cosB
★ cos(A + B) – cos(A – B) = - 2sinA•sinB
Solution :
- Solution : To find : 2sin15°cos75° = ?
We know that ,
2sinA•cosB = sin(A + B) + sin(A – B)
If A = 15° and B = 75° , then
=> 2sin15°cos75° = sin(15° - 75°) + sin(15° + 75°)
=> 2sin15°cos75° = sin(-60°) + sin90°
=> 2sin15°cos75° = -sin60° + sin90°
=> 2sin15°cos75° = -√3/2 + 1
=> 2sin15°cos75° = 1 - √3/2
=> 2sin15°cos75° = (2 - √3)/2
Hence ,
2sin15°cos75° = (2 - √3)/2
_________________________________________
_________________________________________
_________________________________________
_________________________________________
We first find the value of sin 15° and then value of cos 75°.
_________________________________________
_________________________________________
Trigonometry Formulas
- sin(−θ) = −sin θ
- cos(−θ) = cos θ
- tan(−θ) = −tan θ
- cosec(−θ) = −cosecθ
- sec(−θ) = sec θ
- cot(−θ) = −cot θ
Product to Sum Formulas
- sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
- cos x cos y = 1/2[cos(x–y) + cos(x+y)]
- sin x cos y = 1/2[sin(x+y) + sin(x−y)]
- cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
- sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
- sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
- cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
- cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Sum or Difference of angles
- cos (A + B) = cos A cos B – sin A sin B
- cos (A – B) = cos A cos B + sin A sin B
- sin (A+B) = sin A cos B + cos A sin B
- sin (A -B) = sin A cos B – cos A sin B
- tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
- tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
- cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
- cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
- cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
- sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A
Multiple and Submultiple angles
- sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
- cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
- tan 2A = (2 tan A)/(1-tan²A)