Math, asked by akuro787898, 4 months ago

Guys please answer this question​

Attachments:

Answers

Answered by AlluringNightingale
21

Answer :

1st Option : (2 - √3)/2

Note:

★ sin(A + B) = sinA•cosB + cosA•sinB

★ sin(A – B) = sinA•cosB – cosA•sinB

★ cos(A + B) = cosA•cosB – sinA•sinB

★ cos(A – B) = cosA•cosB + sinA•sinB

★ sin(A + B) + sin(A – B) = 2sinA•cosB

★ sin(A + B) – sin(A – B) = 2cosA•sinB

★ cos(A + B) + cos(A – B) = 2cosA•cosB

★ cos(A + B) – cos(A – B) = - 2sinA•sinB

Solution :

  • Solution : To find : 2sin15°cos75° = ?

We know that ,

2sinA•cosB = sin(A + B) + sin(A – B)

If A = 15° and B = 75° , then

=> 2sin15°cos75° = sin(15° - 75°) + sin(15° + 75°)

=> 2sin15°cos75° = sin(-60°) + sin90°

=> 2sin15°cos75° = -sin60° + sin90°

=> 2sin15°cos75° = -√3/2 + 1

=> 2sin15°cos75° = 1 - √3/2

=> 2sin15°cos75° = (2 - √3)/2

Hence ,

2sin15°cos75° = (2 - √3)/2

Answered by mathdude500
8

\underline\blue{\bold{Given  \: Question :-  }}

\bf \:Evaluate : 2 sin 15° cos 75°

_________________________________________

\huge \orange{AηsωeR} ✍

{ \boxed {\bf{Formula  \: used :- }}}

\bf \:sin(x  -  y) = sinx \:cosy  -  siny \: cosx

\bf \:cos(x + y) = cosx \: cosy - sinx \: siny

\bf \: {2sin}^{2} x = 1 - cos2x

\bf \: 2 \: sinx \: cosy \:  = sin(x + y) +\: sin(x - y)

_________________________________________

\bf \:\large \red{Method :- 1} ✍

\bf \:  ⟼ 2 sin 15° cos 75°

\bf \:  ⟼ 2 sin 15° cos (90° - 15°)

\bf \:  ⟼ 2 sin 15° \times  sin 15°

\bf \:  ⟼ 2 {sin}^{2} 15°

\bf \:  ⟼ 1 - cos30°

\bf \:  ⟼ 1 - \dfrac{ \sqrt{3} }{2}

\bf \:  ⟼ \dfrac{2 -  \sqrt{3} }{2}

_________________________________________

\bf \:\large \red{Method :- 2} ✍

_________________________________________

We first find the value of sin 15° and then value of cos 75°.

\begin{gathered}\bf\blue{Now,}\end{gathered}

\bf \:Consider  \: sin15°

\bf \:  ⟼ sin(45° - 30°)

\bf \:  ⟼sin45° \: cos30° - cos45° \: sin30°

\bf \:  ⟼ \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}

\bf \:  ⟼ \dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} }

\begin{gathered}\bf\green{Now,}\end{gathered}

\bf \:  ⟼ Consider \:  cos75°

\bf \:  ⟼ cos(45° + 30°)

\bf \:  ⟼cos45° \: cos30° - sin45° \: sin30°

\bf \:  ⟼ \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}

\bf \:  ⟼ \dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} }

\begin{gathered}\bf\red{Now,}\end{gathered}

\bf \:Consider \: 2 sin 15° cos 75°

\bf \:  ⟼ 2 \times \dfrac{ \sqrt{3} - 1 }{2 \sqrt{2} }  \times \dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} }

\bf \:  ⟼ \dfrac{ {( \sqrt{3}  - 1)}^{2} }{4}

\bf \:  ⟼ \dfrac{3 + 1 - 2 \sqrt{3} }{4}

\bf \:  ⟼ \dfrac{4 - 2 \sqrt{3} }{4}

\bf \:  ⟼ \dfrac{2(2 -  \sqrt{3} )}{4}

\bf \:  ⟼ \dfrac{2 -  \sqrt{3} }{2}

\large{\boxed{\boxed{\bf{Option \:  (a) \:  is  \: correct}}}}

_________________________________________

\bf \:\large \red{Method : 3} ✍

\bf \:Consider \: 2 sin 15° cos 75°

\bf \:  ⟼ sin(15° + 75°) + sin(15° - 75°)

\bf \:  ⟼sin90°  +  sin( - 60°)

\bf \:  ⟼ 1 - sin60°

\bf \:  ⟼ 1 - \dfrac{ \sqrt{3} }{2}

\bf \:  ⟼ \dfrac{2 -  \sqrt{3} }{2}

\large{\boxed{\boxed{\bf{Option  \: (a)  \: is  \: correct}}}}

_________________________________________

\large \blue{\bf \:   Explore \:  more } ✍

Trigonometry Formulas

  • sin(−θ) = −sin θ
  • cos(−θ) = cos θ
  • tan(−θ) = −tan θ
  • cosec(−θ) = −cosecθ
  • sec(−θ) = sec θ
  • cot(−θ) = −cot θ

Product to Sum Formulas

  • sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
  • cos x cos y = 1/2[cos(x–y) + cos(x+y)]
  • sin x cos y = 1/2[sin(x+y) + sin(x−y)]
  • cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

  • sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
  • sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
  • cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
  • cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

  • cos (A + B) = cos A cos B – sin A sin B
  • cos (A – B) = cos A cos B + sin A sin B
  • sin (A+B) = sin A cos B + cos A sin B
  • sin (A -B) = sin A cos B – cos A sin B
  • tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
  • tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
  • cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
  • cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
  • cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
  • sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

  • sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
  • cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
  • tan 2A = (2 tan A)/(1-tan²A)


AlluringNightingale: Amazing answer
Similar questions