Math, asked by abhishekkubasad, 2 months ago

guys please answer this question​

Attachments:

Answers

Answered by BrainlyRish
19

Given : Principal (P) = 3,600, Rate (R) = 2\dfrac{2}{5}= \dfrac{12}{5} % and Time (T) = 4 years and 6 months

Need To Find : Simple Interest ( S.I ) .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀❒⠀⠀⠀First Calculate the exact time in yrs .

As, We know that ,

  • There are 12 months in 1 yrs .

Then ,

  • Time = 3 years and 6 months .

  • Time = \dfrac{3 \times 12 + 6 }{12} \:yrs

  • Time = \dfrac{36 + 6 }{12} \:yrs

  • Time = \dfrac{\cancel {42} }{\cancel {12}} \:yrs

  • Time = \dfrac{7 }{2} \:yrs

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ The Formula for Simple interest ( S.I ) is given by :

\underline {\frak{ \dag As,\: We\:know\:that\::}}\\

\qquad \qquad \underline {\boxed { \sf{ Simple \:Interest \:= \dfrac{P \times  R \times T }{100} }}}\\

⠀⠀⠀⠀⠀Here P is the Principal in Rs. , R is the Rato of Interest in % and T is the time in yrs .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad \qquad:\implies \sf {Simple \:Interest \:: \dfrac{3,600 \times 12 \times 7 }{100\times 5 \times 2} }\\

\qquad \qquad \qquad:\implies \sf {Simple \:Interest \:: \dfrac{36\cancel {00} \times 12 \times 7 }{\cancel {100}\times 5 \times 2 } }\\

\qquad \qquad \qquad:\implies \sf {Simple \:Interest \::\dfrac{\cancel {36} \times 12 \times 7}{5 \times \cancel {2}} }\\

\qquad \qquad \qquad:\implies \sf {Simple \:Interest \::\dfrac{18 \times 12 \times 7}{5 } }\\

\qquad \qquad \qquad:\implies \sf {Simple \:Interest \::\dfrac{216 \times 7}{5 } }\\

\qquad \qquad \qquad:\implies \sf {Simple \:Interest \::\dfrac{1512}{5 } }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Simple \:Interest \:= Rs.\: 302.4}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Simple \:Interest \:(S.I) \:on\:given\:values \:is\:\bf{Rs\: 302.4}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by ananyaaarav123
1

Answer:

hello I can understand why you unfollowed everyone.

Similar questions