Math, asked by shashankraj7604, 10 months ago

Guys please answer this question quickly.I need it right now. I will mark the best answer as brainliest.​

Attachments:

Answers

Answered by prajwal1697
1

 \huge \underline \bold \green{QUESTION}:

 \frac{ \sqrt{1 +  cosx }  +\sqrt{1  -  cosx } }{\sqrt{1 +  cosx } - \sqrt{1  -  cosx }}   \\

__________________________

 \huge \underline \bold \red{SOLUTION}:

 \frac{ \sqrt{1 +  cosx }  +\sqrt{1  -  cosx } }{\sqrt{1 +  cosx } - \sqrt{1  -  cosx }}  \\  =  >  \frac{ \sqrt{2 cos {}^{2} (\frac{x}{2}) }   + \sqrt{2 sin {}^{2}  (\frac{x}{2}) }}{  \sqrt{2 cos {}^{2} (\frac{x}{2}) }    - \sqrt{2 sin {}^{2} (\frac{x}{2}) } }  \\  =  >   \frac{ \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} )  }{ \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} )}  \\   \red{divide \: whole \: equn \: by \: cos \frac{x}{2} } \\  =  >  \frac{1 +  \tan( \frac{x}{2} ) }{1  - \tan( \frac{x}{2} )}  \\    \green{\boxed{=  >  \tan( \frac{\pi}{4}  +  \frac{x}{2} ) }}

__________________________

  \underline\bold \red{final \: answer} :

   \green{\boxed{ \orange{ \tan( \frac{\pi}{4}  +  \frac{x}{2} ) }}}

__________________________

\underline\bold \red{formulas \: used} :   \\

 =  > 1 +  \cos( \alpha )  = 2 {  cos  }^{2}  \frac{ \alpha }{2}  \\  =  > 1 -  \cos(  \alpha )  = 2 \sin {}^{2}  \frac{ \alpha }{2}  \\  =  >  \frac{1 +  \tan( \alpha ) }{1 -  \tan( \alpha ) }  =  \tan( \frac{\pi}{4} +  \alpha  )

__________________________

hope it helps you

Similar questions