English, asked by gchowdhary15, 11 months ago

Guys, Please answer this question, with full explanation.​

Attachments:

Answers

Answered by MoUxI2005
0
Hope you get the right answer
Hence proved ,
Attachments:
Answered by Anonymous
72

Question

to prove :

 \frac{ \sin {}^{4} (x)  +  \cos{}^{4} (x)}{1 - 2 \sin {}^{2} (x) \cos {}^{2} (x)  }  = 1

solution

RHS

 =  \frac{ \sin {}^{4} (x)  +  \cos {}^{4} (x) }{1 - 2 \sin {}^{2} (x)  \cos {}^{2} (x) }

 =  \frac{ \cos {}^{4} (x)  + \sin {}^{4} (x)  }{1 - 2(1 - \cos {}^{2} (x) ) \cos {}^{2} (x)  }

 =  \frac{ \sin {}^{4} (x)   + \cos {}^{4} (x) }{ \sin {}^{2} (x)   + \cos {}^{2} (x)  - 2( \cos {}^{2} ( x )   - \cos {}^{4} (x) )}

 =  \frac{ \sin {}^{4} (x)  +  \cos {}^{4} (x) }{ \cos {}^{4} (x)  +  \cos {}^{4} (x) +  \sin {}^{2} (x)  +  \cos {}^{2} (x)   - 2 \cos {}^{2} (x) }

 =  \frac{ \sin {}^{4} (x)  +  \cos {}^{4} (x) }{ \cos { }^{4}  (x)  +  \sin {}^{2} (x)  -  \cos {}^{2} (x) + (1 -  \sin {}^{2} (x)) {}^{2}   }

on solving denominator you get ;

 =  \frac{ \sin {}^{4} (x)   +  \cos {}^{4} (x) }{ \cos {}^{4} (x)  +  \sin {}^{4} (x) }

 = 1

mark answer as brainlist

follow me

Similar questions