Physics, asked by robertstark412, 9 months ago

guys please...fast...​

Attachments:

Answers

Answered by nirman95
7

Answer:

Given :

A function of x wrt t has been provided as follows :

x =  \sqrt{t}  +  \dfrac{1}{ \sqrt{t} }

To find:

Derivative of x with respect to t

Calculation:

x =  \sqrt{t}  +  \dfrac{1}{ \sqrt{t} }

 =  >  \dfrac{dx}{dt}  =  \dfrac{d( \sqrt{t} )}{dt}  +  \dfrac{d( {t}^{ -  \frac{1}{2} }) }{dt}

 =  >  \dfrac{dx}{dt}  =  \dfrac{d(  {t}^{ \frac{1}{2} } )}{dt}  +  \dfrac{d( {t}^{ -  \frac{1}{2} }) }{dt}

 =  >  \dfrac{dx}{dt}  =  \dfrac{1}{2}  {t}^{ (\frac{1}{2} - 1) }   -  \dfrac{1}{2} {t}^{ (-  \frac{1}{2}  - 1)}

 =  >  \dfrac{dx}{dt}  =  \dfrac{1}{2}  {t}^{ ( - \frac{1}{2} ) }   -  \dfrac{1}{2} {t}^{ (-  \frac{3}{2} )}

 =  >  \dfrac{dx}{dt}  =  \dfrac{1}{2 \sqrt{t} }  -  \dfrac{1}{2t \sqrt{t} }

So final answer :

 \boxed{ \red{ \bold{ \dfrac{dx}{dt}  =  \dfrac{1}{2 \sqrt{t} }  -  \dfrac{1}{2t \sqrt{t} } }}}

Answered by Anonymous
7

Solution :

Given :-

✏ A function of x in terms of time t

\boxed{\sf{\pink{x=\sqrt{t}+\dfrac{1}{\sqrt{t}}}}}

To Find :-

✏ dx/dt = ?

Calculation :-

\dashrightarrow\sf\:\dfrac{dx}{dt}=\dfrac{d(\sqrt{t}+\frac{1}{\sqrt{t}})}{dt}\\ \\ \dashrightarrow\sf\:\dfrac{dx}{dt}=\dfrac{d(t^{\frac{1}{2}}+t^{-\frac{1}{2}})}{dt}\\ \\ \dashrightarrow\sf\:\dfrac{dx}{dt}=\dfrac{1}{2}t^{\frac{1}{2}-1}-\frac{1}{2}t^{-\frac{1}{2}-1}\\ \\ \dashrightarrow\sf\:\dfrac{dx}{dt}=\dfrac{1}{2}t^{-\frac{1}{2}}-\dfrac{1}{2}t^{-\frac{3}{2}}\\ \\ \dashrightarrow\sf\:\dfrac{dx}{dt}=\dfrac{1}{2\sqrt{t}}-\dfrac{1}{2\sqrt{t^3}}\\ \\ \dashrightarrow\:\boxed{\tt{\purple{\large{\dfrac{dx}{dt}=\dfrac{1}{2\sqrt{t}}-\dfrac{1}{2t\sqrt{t}}}}}}

Similar questions