Math, asked by Anonymous, 9 months ago

Guys please find this answer.
I am not able to do.
No spam please it will be reported.​

Attachments:

Answers

Answered by Unknown0708
12

Answer:

In this question we need to find A4 i.e equal to

a + 3d

Here a = -2

and d = -2

Therefore a + 3d = -2+3(-2) = -2 - 6 = -8

Please mark this answer as brainliest.

Answered by Anonymous
7

Answer:

\\\\

\tt First\:four\: terms\:=\:-2 , -4 , -6 , -8 , -10 , ..... \\  \\  \\

Explanation:

\\\\

We know that,

General Term of an AP = a + (n-1)d

\\

where,

a = first term

n = number of terms in AP

d = common difference

\\\\

Given:

\\\\

\tt a_1(first \: term) = - 2    \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\tt n(number \: of \: terms )\:  = \:  4 \: \: \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:\:\:  \\\tt d (common \: difference)\:  =  \:  - 2 \: \:\:\: \:

\\\\

a_2 =  a + (2 - 1)d \\ a_2 = a + d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\: \\  a_2=  - 2 - 2\:\:\: \\  a_2 =  - 2 -2 \:  \:  \:  \:  \:  \: \: \: \:  \:  \:  \:  \:  \\  a_2 =  -4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\\\\

a_3 =  a + (3 - 1)d \\ a_3 = a + 2d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  a_3 =  - 2 + 2 \times  - 2 \\  a_3 =  - 2 - 4 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \\  a_3=  -6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\\\\

a_4 =  a + (4 - 1)d \\ a_4 = a + 3d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  a_4 =  - 2 + 3 \times  - 2 \\  a_4 =  - 2 - 6 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \\  a_4 =  -8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\

AP = -2 , -4 , -6 , -8 , -10 , -12 , ......\\\\

Therefore, the answer is -2 , -4 , -6 and -8.

\\\\\\

Other AP Formulas:

\\\\\\

nth term of an AP formulas

\\\\\sf 1) \: n_{th} \: term \: of \: any \: AP \: = a + (n - 1)d\\

\sf 2) \:n_{th} \: term \: from \: the \: end \: of \: an \: AP \: = a + (m - n)d\\

\sf 3) \:n_{th} \: term \: from \: the \: end \: of \: an \: AP = l - (n - 1)d\\

\sf 4) \: Difference \: of \: two \: terms = (m - n)d\\

where m and n is the position of the term in AP\\

\sf 5) \:Middle\: term\: of\: a\: finite\: AP\:

\sf (i) \:\: If \: n \: is \: odd = \frac{n + 1}{2}\:th\:term

\sf (ii) \:\: If \: n \: is \: even = \frac{n}{2} \:th \: term \: and \: ( \frac{n}{2} + 1)th \: term\\

\\\\

Sum Formulas

\\\\

\sf 1) \: Sum \: of \: first \: n \: terms \: of \: an \:AP = \frac{n}{2} [ \: 2a + (n - 1)d \: ]\\

\sf 2) \: Sum \: of \: first \: n \: natural \: numbers = \frac{n(n + 1)}{2}\\

\sf 3) \: Sum \: of \: AP \: having \: last \: term = \frac{n}{2} [ \: a + l \: ]\\

Similar questions