Math, asked by rishikasarpal, 3 months ago

Guys please help and please give the solution not just the answer❤️​

Attachments:

Answers

Answered by Snapskg730
6

Answer:

 \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} }  +  \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} }

 \frac{(3 +  \sqrt{ 5}) {}^{2}  + (3 -  \sqrt{5} ) {}^{2}  }{(3 -  \sqrt{5}) (3 +  \sqrt{5}) }

 \frac{9 + 5 + 6 \sqrt{5}  + 9 + 5 - 6 \sqrt{5} }{(3) {}^{2}  - ( \sqrt{5}) {}^{2}  }

 \frac{28}{9 - 5}  =  \frac{28}{4}  =  \frac{14}{2}  = 7

Answered by WildCat7083
2

 \tt \: \frac{ 3+ \sqrt{ 5  }    }{ 3- \sqrt{ 5  }    }  + \frac{ 3- \sqrt{ 5  }    }{ 3+ \sqrt{ 5  }    }

 \tt \: \frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\frac{3-\sqrt{5}}{3+\sqrt{5}}

  • Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \tt \: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.

 \tt \: \frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}+\frac{3-\sqrt{5}}{3+\sqrt{5}}  \\  \\  \tt \: \frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{9-5}+\frac{3-\sqrt{5}}{3+\sqrt{5}} \\  \\  \tt \: \frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}+\frac{3-\sqrt{5}}{3+\sqrt{5}}\\  \\  \tt \:  Use \:  binomial  \: theorem  \\  \\  \tt \: \left(a+b\right)^{2}=a^{2}+2ab+b^{2} \:  to \:  expand \:  \left(3+\sqrt{5}\right)^{2}.\\  \\  \tt \: \frac{9+6\sqrt{5}+\left(\sqrt{5}\right)^{2}}{4}+\frac{3-\sqrt{5}}{3+\sqrt{5}} \\  \\ \tt \: \frac{9+6\sqrt{5}+5}{4}+\frac{3-\sqrt{5}}{3+\sqrt{5}} \\  \\ \tt \: \frac{14+6\sqrt{5}}{4}+\frac{3-\sqrt{5}}{3+\sqrt{5}} \\  \\ \tt \: \frac{14+6\sqrt{5}}{4}+\frac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)} \\  \\ \tt \:

  • Consider  \tt \: \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule:  \tt \: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.

 \tt \: \frac{14+6\sqrt{5}}{4}+\frac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}} \\  \\  \tt \: \frac{14+6\sqrt{5}}{4}+\frac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{9-5} \\  \\  \tt \:\frac{14+6\sqrt{5}}{4}+\frac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4} \\  \\  \tt \: \frac{14+6\sqrt{5}}{4}+</p><p>\frac{\left(3-\sqrt{5}\right)^{2}}{4} \\  \\  \tt \: Use \:  binomial \:  theorem \\  \\  \tt \: \left(a-b\right)^{2}=a^{2}-2ab+b^{2} \:  to \:  expand \: \left(3-\sqrt{5}\right)^{2}.\\   \\  \tt \: \frac{14+6\sqrt{5}}{4}+\frac{9-6\sqrt{5}+5}{4} \\  \\  \tt \: \frac{14+6\sqrt{5}}{4}+\frac{14-6\sqrt{5}}{4} \\  \\  \tt \: \frac{14+6\sqrt{5}+14-6\sqrt{5}}{4} \\  \\  \tt \: \frac{28}{4} \\  \\  \tt \: 7

______________________________

 \sf \: @WildCat7083

Similar questions