Math, asked by dastarunseo369, 15 days ago

guys, please help me​

Attachments:

Answers

Answered by mathdude500
12

Given Question :-

Solve for x :

\rm :\longmapsto\:\dfrac{2x}{3}  - \dfrac{x}{4}  = \dfrac{x}{5}  - \dfrac{x}{6}  + 23

 \red{\large\underline{\sf{Solution-}}}

Given equation is

\rm :\longmapsto\:\dfrac{2x}{3}  - \dfrac{x}{4}  = \dfrac{x}{5}  - \dfrac{x}{6}  + 23

On taking LCM of 3 and 4 on LHS and taking LCM of 5 and 6 on RHS, we get

\rm :\longmapsto\:\dfrac{8x - 3x}{12} = \dfrac{6x - 5x + 690}{30}

\rm :\longmapsto\:\dfrac{5x}{12} = \dfrac{x + 690}{30}

\rm :\longmapsto\:30(5x) = 12(x + 690)

On dividing by 6, on both sides, we get

\rm :\longmapsto\:5(5x) = 2(x + 690)

\rm :\longmapsto\:25x = 2x + 690 \times 2

\rm :\longmapsto\:25x - 2x = 690 \times 2

\rm :\longmapsto\:23x = 690 \times 2

\rm :\longmapsto\:x = \dfrac{690 \times 2}{23}

\rm :\longmapsto\:x = 30 \times 2

 \purple{\bf\implies \:\boxed{ \tt{ \: x = 60 \: }}}

Verification :-

Given equation is

\rm :\longmapsto\:\dfrac{2x}{3}  - \dfrac{x}{4}  = \dfrac{x}{5}  - \dfrac{x}{6}  + 23

Consider LHS

\rm :\longmapsto\:\dfrac{2x}{3}  - \dfrac{x}{4}

On substituting x = 60, we get

\rm \:  =  \:\dfrac{2 \times 60}{3}  - \dfrac{60}{4}

\rm \:  =  \:40 - 15

\rm \:  =  \:25

Now, Consider RHS

\rm :\longmapsto\:\dfrac{x}{5}  - \dfrac{x}{6}  + 23

On substituting x = 60, we get

\rm \:  =  \:\dfrac{60}{5}  - \dfrac{60}{6}  + 23

\rm \:  =  \:12 - 10  + 23

\rm \:  =  \:2  + 23

\rm \:  =  \:25

So,

\bf\implies \:LHS = RHS

Hence, Verified

Similar questions