Math, asked by devika3110, 1 month ago

guys please help me in solving this question sin theta[1+tan theta] + cos theta [1+ cot theta]=sec theta + cosec theta​

Answers

Answered by Anonymous
4

TO PROVE :-

 \\  \sf \: sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) = sec\theta.cosec \theta  \\  \\

SOLUTION :-

 \\   \sf \: L.H.S = sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) \\   \\  \\  \bigstar\boxed{ \bf \: tan\theta =  \frac{sin\theta}{cos\theta} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar\boxed{ \bf \:cot\theta =  \dfrac{cos\theta}{sin\theta}  } \\  \\

  \implies \sf \: sin\theta \left( 1 +  \dfrac{sin\theta}{cos\theta} \right) + cos\theta \left(1 +  \dfrac{cos\theta}{sin\theta}  \right) \\  \\

 \\  \implies \sf \: sin\theta\left(  \dfrac{cos\theta + sin\theta}{cos\theta} \right) + cos\theta\left(  \dfrac{sin\theta + cos\theta}{sin\theta} \right) \\  \\

  \\  \implies \sf \:  \dfrac{sin\theta(cos\theta + sin\theta)}{cos\theta}  +  \dfrac{cos\theta(sin\theta + cos\theta)}{sin\theta}  \\  \\

 \\ \implies  \sf \:  \dfrac{ {sin}^{2}\theta (cos\theta + sin\theta) +  {cos}^{2}\theta(sin\theta + cos\theta) }{sin\theta.cos\theta}  \\  \\  \\   \bigstar\boxed{\bf \:  {sin}^{2}\theta +  {cos}^{2}\theta  = 1 } \\  \\   \\   \implies\sf \:  \dfrac{1}{sin\theta.cos\theta}  \\

  \\  \\   \bigstar\boxed{ \bf \: \dfrac{1}{sin\theta}  = cosec\theta } \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar\boxed{ \bf \: \dfrac{1}{cos \theta}  = sec\theta } \\  \\

 \\ \implies  \sf \: cosec\theta.sec\theta   = R.H.S \:  \:  \:  \:  \:  \:  \: (proved)

Similar questions