guys please help me question is in attachment.Maths class 10
Answers
Given :-
- tanA = n*tanB
- sinA = m*sinB
To Prove :-
- cos²A = (m² - 1)/(n² - 1)
Solution :-
→ tanA = n*tanB
Cross - Multiplying ,
→ 1/tanB = n/tanA
Now, we know That 1/tan@ = cot@ .
So,
→ cotB = n/tanA ----------------- Equation (1).
______________________
Similarly,
→ sinA = m*sinB
→ 1/sinB = m/sinA
Now, we know That 1/sin@ = cosec@ .So,
→ cosecB = m/sinA -------------- Equation (2).
______________________
Now, we know That, cose²@ - cot²@ = 1.
Putting Both Values from Equation (1) & (2) now, we get,
→ cosec²B - cot²B = 1
Or,
→ (m/sinA)² - (n/tanA)² = 1
Now putting tanA = (sinA /cosA) we get,
→ (m²/sin²A) - (n²cos²A/sin²A) = 1
Taking LCM,
→ (m² - n²cos²A) /sin²A = 1
→ (m² - n²cos²A) = sin²A
Now, putting sin²A = (1 - cos²A) in RHS, we get,
→ (m² - n²cos²A) = ( 1 - cos²A)
→ n²cos²A - cos²A = (m² - 1)
Taking cos²A common From LHS,
→ cos²A(n² - 1) = (m² - 1)
→ cos²A = (m² - 1) / (n² - 1) = Hence, Proved .
______________________________
---------------METHOD(1)-------------------
GIVEN :-
• n = tanA/tanB
• m = sinA/ sinB
TO Prove :-
cos²A
Proof :-
=> R.H.S = m²-1/n²-1
=> sin²A/sin²B -1 / tan²B/tan²B -1
=> sin²A - sin²B/sin²B / tan²A - tan²B/ tan²B
=>.°. sin²A - sin²B/sin²B / tan²A - tan²B/ tan²B = sin²B / cos²B
=> sin²A - sin²B / cos²B(tan²A - tan²B)
=> 1-cos²A -1 + cos²B / cos²B(sec²A-1-sec²+1)
=> cos²B - cos²A / cos²B(1/cos²A - 1/cos²B)
=> cos²B - cos²A / cos²B (cos²B - cos²A) /cos²A.cos²B.
=>L.H.S = Cos²A
=> .°. R.H.S = cos²A = L. H. S
---------------METHOD(2)-------------------
solution :-
=> tan²A = n tanB = tanB = 1/n tanA = cot²A = n/tanA
=> sinA = m sinB = 1/m sinA = cosecB = m/sinA.
=> putting the value of CotB and cosecB in cosec²B - cot²B = 1 , we get,
=> m²/sin²A - n²/tan²A = 1
=> m²/sin²A - n²cos²A/sin²A = 1
=> m²-n²cos²A / sin²A= 1
=> m²-n² cos²A = sin²A
=> m²-n² cos²A = 1 - sin²A [°.°sin²A =1 -cos²A]
=> m²-1 = n² cos²A - cos²A
=> m² - 1 = (n²-1) cos²A