Math, asked by anvisrishti, 3 months ago

Guys please help me with this question

Attachments:

Answers

Answered by Salmonpanna2022
3

Answer:

The value of a = 0 and b = -$\frac{2}{3}$

Step-by-step explanation:

Given that:

 \frac{ \sqrt{7}  - 1}{ \sqrt{7} + 1 }  -  \frac{ \sqrt{7}  + 1 }{ \sqrt{7}  - 1}  = a + b \sqrt{7}  \\  \\

To find:

The value of a and b.

Solution:

We have,

 \frac{ \sqrt{7}  - 1}{ \sqrt{7} + 1 }  -  \frac{ \sqrt{7}  + 1 }{ \sqrt{7}  - 1}  \\  \\

By Rationalising the denominator, we get

{\huge{\Rightarrow}} \: \frac{ \sqrt{7}  - 1}{ \sqrt{7 + 1} } \times  \frac{ \sqrt{7 }  - 1}{ \sqrt{7} - 1 }   -   \frac{ \sqrt{7}  + 1 }{ \sqrt{7} - 1 }  \times  \frac{ \sqrt{7}  + 1}{ \sqrt{7}  +  1 }  \\  \\

{\huge{\Rightarrow}} \: \frac{( \sqrt{7}  - 1 {)}^{2} }{( \sqrt{7}  + 1)( \sqrt{7}  - 1}  -  \frac{( \sqrt{7}  + 1 {)}^{2} }{( \sqrt{7} - 1)( \sqrt{7} + 1)  }  \\  \\

{\huge{\Rightarrow}} \: \frac{7 + 1 - 2 \sqrt{2} }{(\sqrt{7}  {)}^{2}  -  {1}^{2} }  -  \frac{7 + 1  + 2 \sqrt{7} }{( \sqrt{7} {)}^{2}  -  {1}^{2}  }  \\  \\

{\huge{\Rightarrow}} \: \frac{8 - 2 \sqrt{7} }{7 - 1}  -  \frac{8 + 2 \sqrt{7} }{7 - 1}  \\  \\

{\huge{\Rightarrow}} \: \frac{1}{6}(8 - 2 \sqrt{7}   - 8 - 2 \sqrt{7} ) \\  \\

{\huge{\Rightarrow}} \:0 -  \frac{4 \sqrt{7} }{6 }  = 0 + ( \frac{ - 2}{3} ) \sqrt{7} \\  \\

∴ \: 0 + ( \frac{ - 2}{3} ) = a + b \sqrt{7}  \\  \\

According to the question we find,the value of

{\huge{\Rightarrow}} \:a = 0 \: and \: b =  -  \frac{2}{3}  \\

Similar questions