Math, asked by hargun1179, 10 months ago

GUYS PLEASE SOLVE THE 4TH SUM. ​

Attachments:

Answers

Answered by EuphoricEpitome
6

Question:

a = -2, b = -1 then  a^{-b} - b^{-a} \: =

Solution:

by putting the values of a and b

a^{-b} - b^{-a} = \\ \\ \\ (-2)^{-(-1)} - (-1)^{-(-2)}\\ \\ \\ = (-2)^{1} - (-1)^2\\ \\ \\ = -2 - (1) \\ \\ \\ -2-1 =  - 3\\ \\ \\{\pink{\boxed{ a^{-b} - b^{-a} = -3}}}

Additional Information :

Laws\:of\: exponents \\ \\ \\ \implies a^m \times a^n = a^{m+n}\\ \\ \\ \implies \frac{a^m}{a^n} = a^{m-n}\\ \\ \\ \implies  (a^m)^n = a^{mn}\\ \\ \\ \implies a^{-m} = \frac{1}{a^m} \\ \\ \\ \implies a^0 = 1

Answered by Anonymous
12

Question:

If a = -2 and b = -1 , then find the value of a^{-b} - b^{-a}

To Find:

The value of a^{-b} - b^{-a}

Solution:

Putting the value of a and b in the equation , we get;

(-2)^{-1} - (-1)^{-2}

(-2)^{-(-1)} + 1^{-(-2)}

-2 - 1

= -3

Similar questions