Math, asked by Anonymous, 7 months ago

guys please tell me the solution...
I can't understand..​

Attachments:

Answers

Answered by udaykushwaha2004
2

Answer:

(i)

Step-by-step explanation:

cos².sec²(1-sin²=cos²)

1(cos.sec=1)

Answered by AntonyLigin
3

Answer:

i)(1 - sin {}^{2} A)sec {}^{2} A = cos {}^{2} A \: sec {}^{2} A \\  \:  \:  \:  \:  \:  = cos {}^{2}A \times  \frac{1}{cos {}^{2 }A}   \\  = 1

ii) \sqrt{sec {}^{2}Ø + cosec {}^{2}Ø}  =  \sqrt{ \frac{1}{cos {}^{2}Ø} +  \frac{1}{sin {}^{2}Ø}  }  \\  \:  \:  \:  \:  \:  \:  =  \sqrt{ \frac{sin {}^{2}Ø + cos {}^{2}Ø}{sin {}^{2}Øcos {}^{2}Ø} }  \\  \:  \:  \:  \:  =  \sqrt{ \frac{1}{sin {}^{2}Øcos {}^{2}Ø} }  \\  \:  \:  \:  \:  =  \frac{1}{sin \:Øcos \:Ø}  \\  =  \frac{1}{sinØ}  \times  \frac{1}{cosØ} \\  \:  \:  \:  \:  \:  \:  = cosecØsecØ...............(1) \\ tanØ + cotØ =  \frac{sinØ}{cosØ} +  \frac{cosØ}{sinØ} =  \frac{sin {}^{2} Ø + cos {}^{2}Ø}{sinØcosØ}  \\  \:  \:  \:  \:  \:  \:  =  \frac{1}{sinØcosØ}  =  cosecØsecØ...........(2) \\ from \:(1) \: and \: (2) \: it \: is \: proved

iii)4tan {}^{2} A -  \frac{4}{cos {}^{2}A }  = 4(tan {}^{2}A  -  \frac{1}{cos {}^{2} A} ) \\  \:  \:  \:  \:  \:  = 4(tan {}^{2} A - sec {}^{2}A) \\  \:  \:  \:  \:  \:  \:  =  - 4(sec {}^{2} A- tan {}^{2} A) \\  \:  \:  \:  \:  \:  \:  =  - 4(1) =  - 4

Sorry, rest I didn't get the answer....

Similar questions