Math, asked by snehasshekhar, 3 months ago

Guys please tell this

NO SPAM ​

Attachments:

Answers

Answered by GlamorousGirl
14

{\huge{\red{\underline{\underline{\mathrm{\blue{ᴀɴSᴡᴇʀ࿐}}}}}}}

GIVEN,

cos\theta + sin\theta = √2 cos\theta

Squaring on both sides , we get

cos²\theta + sin²\theta + 2sin\theta = 2cos² \theta

cos² \theta - sin² \theta = 2cos \theta 2sin\theta

(cos\theta + sin \theta) (cos \theta - sin \theta) = 2cos \theta sin \theta

√2cos\thetacos\theta - sin\theta= 2cos \theta - sin\theta= 2cos \theta sin \theta [given cos \theta+sin\theta=2cos\theta ]

\therefore cos\theta - sin\theta = √2sin \theta

HENCE PROVED :)

{\huge{\blue{\underline{\overline{\mathrm{\red{Hope \: this \: helps \: you}}}}}}}

{\huge{\pink{\underline{\underline{\mathscr{\purple{Mark \: Me \: Brainliest}}}}}}}


snehasshekhar: Thanks
GlamorousGirl: wello :)
Answered by 2008shrishti
1

Answer:

GIVEN,

cos\thetaθ + sin\thetaθ = √2 cos\thetaθ

Squaring on both sides , we get

cos²\thetaθ + sin²\thetaθ + 2sin\thetaθ = 2cos² \thetaθ

cos² \thetaθ - sin² \thetaθ = 2cos \thetaθ 2sin\thetaθ

(cos\thetaθ + sin \thetaθ ) (cos \thetaθ - sin \thetaθ ) = 2cos \thetaθ sin \thetaθ

√2cos\thetaθ cos\thetaθ - sin\thetaθ = 2cos \thetaθ - sin\thetaθ = 2cos \thetaθ sin \thetaθ [given cos \thetaθ +sin\thetaθ =√2cos\thetaθ ]

therefore∴ costhetaθ - sin\thetaθ = √2sin thetaθ

HENCE PROVED

Step-by-step explanation:

Hope this answer will help you.

Similar questions