Guys please tell this
NO SPAM
Answers
GIVEN,
cos + sin = √2 cos
Squaring on both sides , we get
cos² + sin² + 2sin = 2cos²
cos² - sin² = 2cos 2sin
(cos + sin ) (cos - sin ) = 2cos sin
√2coscos - sin= 2cos - sin= 2cos sin [given cos +sin=√2cos ]
cos - sin = √2sin
HENCE PROVED :)
Answer:
GIVEN,
cos\thetaθ + sin\thetaθ = √2 cos\thetaθ
Squaring on both sides , we get
cos²\thetaθ + sin²\thetaθ + 2sin\thetaθ = 2cos² \thetaθ
cos² \thetaθ - sin² \thetaθ = 2cos \thetaθ 2sin\thetaθ
(cos\thetaθ + sin \thetaθ ) (cos \thetaθ - sin \thetaθ ) = 2cos \thetaθ sin \thetaθ
√2cos\thetaθ cos\thetaθ - sin\thetaθ = 2cos \thetaθ - sin\thetaθ = 2cos \thetaθ sin \thetaθ [given cos \thetaθ +sin\thetaθ =√2cos\thetaθ ]
therefore∴ costhetaθ - sin\thetaθ = √2sin thetaθ
HENCE PROVED
Step-by-step explanation:
Hope this answer will help you.