Math, asked by Anonymous, 5 months ago

guys plez answer this question......​

Attachments:

Answers

Answered by suraj5070
181

 \huge {\boxed {\mathbb {QUESTION}}}

 If\:\frac{d}{dx} f(x) =4{x}{3}-\frac{3}{{x}^{4}}\:such\:that\:f(2)=0.\:Then\:f(x)\:is

 (A) \:{x}^{4}+\frac{1}{{x}^{3}}-\frac{129}{8}

 (B) \:{x}^{3}+\frac{1}{{x}^{4}}+\frac{129}{8}

 (C) \:{x}^{4}+\frac{1}{{x}^{3}}+\frac{129}{8}

 (D) \:{x}^{3}+\frac{1}{{x}^{4}}-\frac{129}{8}

 \huge {\boxed {\mathbb {ANSWER}}}

 {\boxed {\mathbb {GIVEN}}}

\implies \frac{d}{dx} f(x) =4{x}^{3}-\frac{3}{{x}^{4}}

 {\boxed {\mathbb {SOLUTION}}}

 Integrate\: the\: both\: sides

\implies \int \frac{d}{dx} f(x) =\int (4{x}^{3}-\frac{3}{{x}^{4}}) dx

\implies \int \frac{d}{dx} f(x)=4 \int {x}^{3} dx-3\int \frac{1}{{x}^{4}} dx

\implies f(x) =4\int {x}^{3} dx - 3\int {x}^{-4} dx

 \implies f(x) =4\frac{{x}^{3+1}}{3+1} - 3\frac{{x}^{-4+1}}{-4+1} +C

 (because\: \int {x}^{n} dx=\frac{{x}^{n+1}}{n+1}+C)

 \implies f(x) =4\frac{{x}^{4}}{4}-3\frac{{x}^{-3}}{-3} +C

 \implies f(x)={x}^{4}+{x}^{-3}+C

 \implies {\boxed {\boxed {f(x)={x}^{4}+\frac{1}{{x}^{3}}+C}}} ---(1)

_______________________________________

\huge {f(2)=0}

 x=2

 Substitute \:the \:value \:in\:(1)

\implies f(2)={(2)}^{4}+\frac{1}{{2}^{3}} +C

\implies 0=16+\frac{1}{8}+C

 (because \:f(2)=0)

 \implies 0=\frac{128+1}{8} +C

\implies 0=\frac{129}{8} +C

 \implies {\boxed {\boxed {C=\frac{-129}{8}}}}

_______________________________________

 \huge {C=\frac{-129}{8}}

 Substitute \:the \:value \:in\:(1)

 \implies f(x) ={x}^{4}+\frac{1}{{x}^{3}}+C

 \implies{\boxed {\boxed {\boxed {f(x) ={x}^{4}+\frac{1}{{x}^{3}}+\frac{-129}{8}}}}}

 \therefore Option\: (A) \:is\:correct

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Substitutional \:Method

Solving \: one\: of \:the\: equations\: for\: one\: of\\ the\: variables\:  and\: then\: plugging\: this\: back\\ into\: the \:other\: equation\: "substituting"\: for\: the\\ chosen\: variable \:and\: solving\: for\: the \:other.\\ Then\: you\: back\:solve\: for\: the\: first \:variable.\\Is \:called\: substitution\: method

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Answered by Anonymous
14

Answer:

a) is answer dear friend

Similar questions