Guys pls give solution for
( Class 10th ncert text book )
Qno12 EX 10.2
Answers
In ΔABC,
Length of two tangents drawn from the same point to the circle are equal,
∴ CF = CD = 6cm
∴ BE = BD = 8cm
∴ AE = AF = x
We observed that,
AB = AE + EB = x + 8
BC = BD + DC = 8 + 6 = 14
CA = CF + FA = 6 + x
Now semi perimeter of triangle (s) is,
⇒ 2s = AB + BC + CA
= x + 8 + 14 + 6 + x
= 28 + 2x
⇒s = 14 + x
Area of ΔABC = √ s (s - a)(s - b)(s - c)
= √ (14 + x) (14 + x - 14)(14 + x - x - 6)(14 + x - x - 8)
= √ (14 + x) (x)(8)(6)
= √ (14 + x) 48 x ... (i)
also, Area of ΔABC = 2×area of (ΔAOF + ΔCOD + ΔDOB)
= 2×[(1/2×OF×AF) + (1/2×CD×OD) + (1/2×DB×OD)]
= 2×1/2 (4x + 24 + 32) = 56 + 4x ... (ii)
Equating equation (i) and (ii) we get....
√ (14 + x) 48 x = 56 + 4x
Squaring both sides...
48x (14 + x) = (56 + 4x)2
⇒ 48x = [4(14 + x)]2/(14 + x)
⇒ 48x = 16 (14 + x)
⇒ 48x = 224 + 16x
⇒ 32x = 224
⇒ x = 7 cm
Hence, AB = x + 8 = 7 + 8 = 15 cm
CA = 6 + x = 6 + 7 = 13 cm