Math, asked by nk7790582, 1 month ago

Guys pls help. Pls give me correct answer.​

Attachments:

Answers

Answered by Aryan0123
12

Answer:

(91)³

\\

Step-by-step explanation:

Given Question:

Simplify:

\bf{\dfrac{3^2 \times 7^8 \times 13^6}{21^2 \times 91^3}}\\\\

Solution:

As we can observe there are bigger numbers in the denominator.

So let us apply laws of exponents to simplify the denominator.

\\

Laws of exponents used:

  • aᵐ × aⁿ = aᵐ⁺ⁿ
  • (a × b)ᵐ = aᵐ × bᵐ

\\

Now, 21 can be written as (7 × 3) and 91 can be written as (13 × 7)

\\

Now the expression becomes:

\dashrightarrow \: \: \: \sf{\dfrac{3^2 \times 7^8 \times 13^6}{(3 \times 7)^{2}\times(13 \times 7)^{3}}}\\\\

Using identity (a × b)ᵐ = aᵐ × bᵐ in denominator,

\Rightarrow \: \sf{\dfrac{3^2 \times 7^8 \times 13^6}{7^2 \times 3^2 \times 13^3 \times 7^3}}\\\\

Cancel 3² in both numerator and denominator

\Rightarrow \: \sf{\dfrac{\not{3^2} \times 7^8 \times 13^6}{7^2 \times \not{3^2} \times 13^3 \times 7^3}}\\\\

\Rightarrow \: \sf{\dfrac{7^8 \times 13^6}{7^2  \times 13^3 \times 7^3}}\\\\

Apply identity aᵐ × aⁿ = aᵐ⁺ⁿ

\Rightarrow \: \sf{\dfrac{7^8 \times 13^6}{13^3 \times 7^{(3+2)}}}\\\\

\Rightarrow \: \sf{\dfrac{7^8 \times 13^6}{13^3 \times 7^{5}}}\\\\

On grouping,

\Rightarrow \: \sf{\dfrac{7^8}{7^5}\times \dfrac{13^6}{13^3}}\\\\

Using identity aᵐ ÷ aⁿ = aᵐ⁻ⁿ

\Rightarrow \: \sf{7^{(8-5)}\times 13^{(6-3)}}\\\\

\Rightarrow \: \sf{7^3 \times 13^3}\\\\

Applying the converse of identity aᵐ × bᵐ = (a × b)ᵐ

So,

\longrightarrow \:  \sf{(7 \times 13)^3}\\\\

= \sf{(91)^3}\\\\

 \therefore \boxed{ \boldsymbol{\dfrac{3^2 \times 7^8 \times 13^6}{21^2 \times 91^3}=(91)^3}}\\\\

Answered by SparklingThunder
14

Step-by-step explanation:

 \frac{ {3}^{2}  \times  {7}^{8} \times  {13}^{6}  }{ {21}^{2} \times  {91}^{3}  }  \\  = \frac{ {3}^{2}  \times  {7}^{8} \times  {13}^{6}  }{ {(3 \times 7)}^{2} \times  {(13 \times 7)}^{3}  }  \\  = \frac{  \cancel{3}^{2}  \times  {7}^{8} \times  {13}^{6}  }{  \cancel{{3}^{2}}  \times  {7}^{2}  \times  {13}^{3}   \times  {7}^{3}   }  \\  =  \frac{ {7}^{8} \times  {13}^{6}  }{ {7}^{2 + 3}  \times  {13}^{3} }  \\  =  \frac{ {7}^{8 } \times  {13}^{6}  }{ {7}^{5}  \times  {13}^{3} }  \\  =  {7}^{8 - 5}  \times  {13}^{6 - 3}  \\  =  {7}^{3}  \times  {13}^{3}  \\  =  {91}^{3}

Similar questions