Math, asked by mehtajeet22, 8 months ago

Guys pls help with this sum

Attachments:

Answers

Answered by Anonymous
7

Solution:-

  \blue{ \rm \: we \: have}

  : \implies \rm \dfrac{1}{1 + x}  +  \dfrac{2 - x}{3 - x}  = 1 +  \dfrac{6}{35}

 \blue{ \rm \: taking \: lcm \: on \: both \: side \: }

  \rm:  \implies \dfrac{1 \times (3 - x) + (2 - x)(1 + x)}{(1 + x)(3 - x)}  =  \dfrac{35 + 6}{35}

 \rm :  \implies \:  \dfrac{(3 - x) + (2 + 2x - x -  {x}^{2} )}{(3 - x + 3x -  {x}^{2} )}  =  \dfrac{41}{35}

 :  \implies \rm \dfrac{3 - x + 2 + x -  {x}^{2} }{3 + 2x -  {x}^{2} }  =  \dfrac{41}{35}

 \rm :  \implies \:  \dfrac{5 -  {x}^{2} }{3 + 2x -  {x}^{2} }  =  \dfrac{41}{35}

 \blue{ \rm \: using \: cross \: multiplication}

 : \implies  \rm35(5 -  {x}^{2} ) = 41(3 + 2x -  {x}^{2} )

 \rm :  \implies  \: 175 - 35 {x}^{2}  = 123 + 82x - 41 {x}^{2}

 \rm : \implies175 - 35 {x}^{2}   - 123 - 82x + 41 {x}^{2}  = 0

 \rm :  \implies 6 {x}^{2}   - 82x + 52 = 0

 :  \implies \rm \: 2(3x {}^{2}  - 41x + 26) = 0

 :  \implies \rm \: 3x {}^{2}  - 41x + 26 = 0

 :  \implies \:  \rm \: 3 {x}^{2}  - 39x - 2x + 26 = 0

 \rm :  \implies \: 3x( {x}^{}  - 13) - 2(x - 13) = 0

 \rm  :  \implies(3x - 2)(x - 13) = 0

 \blue{ \rm \: so}

 \rm \: x =  \dfrac{2}{3}  \:  \: and \: x = 13

Similar questions