guys pls use this app for ur studying purpose
Answers
Answer:
INSHA ALLAH
Step-by-step explanation:
Answer:
The sum of the given monomials is xyz.
Step-by-step-explanation:
We have given some monomials.
We have to find their sum.
The given monomials are
\displaystyle{\sf\:\dfrac{1}{2}\:xyz\:,\:xyz\:,\:\dfrac{3}{2}\:xyz\:,\:-\:2\:xyz}
2
1
xyz,xyz,
2
3
xyz,−2xyz
\displaystyle{\implies\sf\:\dfrac{1}{2}\:xyz\:+\:xyz\:+\:\dfrac{3}{2}\:xyz\:+\:(\:-\:2\:xyz\:)}⟹
2
1
xyz+xyz+
2
3
xyz+(−2xyz)
\displaystyle{\implies\sf\:\left(\:\dfrac{1}{2}\:+\:1\:\right)\:xyz\:+\:\dfrac{3}{2}\:xyz\:-\:2\:xyz}⟹(
2
1
+1)xyz+
2
3
xyz−2xyz
\displaystyle{\implies\sf\:\left(\:\dfrac{1\:+\:2}{2}\:\right)\:xyz\:+\:\left(\:\dfrac{3}{2}\:-\:2\:\right)\:xyz}⟹(
2
1+2
)xyz+(
2
3
−2)xyz
\displaystyle{\implies\sf\:\dfrac{3}{2}\:xyz\:+\:\left(\:\dfrac{3\:-\:4}{2}\:\right)\:xyz}⟹
2
3
xyz+(
2
3−4
)xyz
\displaystyle{\implies\sf\:\dfrac{3}{2}\:xyz\:+\:\left(\:-\:\dfrac{1}{2}\:xyz\:\right)}⟹
2
3
xyz+(−
2
1
xyz)
\displaystyle{\implies\sf\:\dfrac{3}{2}\:xyz\:-\:\dfrac{1}{2}\:xyz}⟹
2
3
xyz−
2
1
xyz
\displaystyle{\implies\sf\:\left(\:\dfrac{3}{2}\:-\:\dfrac{1}{2}\:\right)\:xyz}⟹(
2
3
−
2
1
)xyz
\displaystyle{\implies\sf\:\left(\:\dfrac{3\:-\:1}{2}\:\right)\:xyz}⟹(
2
3−1
)xyz
\displaystyle{\implies\sf\:\cancel{\dfrac{2}{2}}\:xyz}⟹
2
2
xyz
\displaystyle{\implies\sf\:1\:\times\:xyz}⟹1×xyz
\displaystyle{\implies\underline{\boxed{\red{\sf\:xyz\:}}}}⟹
xyz
∴ The sum of the given monomials is xyz.