Math, asked by anshojha2003, 8 months ago

guys plz give that solution prove that
Sinx/1+Cosx = Tanx/2​

Answers

Answered by jeetshek32
1

Step-by-step explanation:

sinx/1+cos x =tanx/2

LHS=sinx/1+cosx

=2sinx/2 cosx/2/2cos^2x/2

=2sinx/2/2 cos x/2

sinx/2/cosx/2

=tanx/2=RHS

Answered by Anonymous
34

 \bold{\underline{To \ Proof:}}

 \sf \frac{sin \: x}{1 + cos \: x}  = tan \:  \frac{x}{2}

 \bold{\underline{Proof:}}

LHS:

 \sf \implies \frac{sin \: x}{1 + cos \: x}  \\  \\  \sf sin \: 2x = 2sin \: x.cos \: x \\ \sf sin \: x = 2sin \:  \frac{x}{2} .cos \:  \frac{x}{2}   :  \\  \\  \sf \implies \frac{2sin \:  \frac{x}{2} .cos \:  \frac{x}{2}}{1 + cos \: x} \\  \\  \\ \sf cos \: 2x = 2 {cos}^{2}  \: x - 1 \\ \sf cos \: 2x = 2 {cos}^{2}  \:  \frac{x}{2}  - 1 :  \\  \\  \sf \implies \frac{2sin \:  \frac{x}{2} .cos \:  \frac{x}{2}}{1 + 2 {cos}^{2}  \:  \frac{x}{2}  - 1 } \\  \\  \sf \implies \frac{ \cancel{2}sin \:  \frac{x}{2} .cos \:  \frac{x}{2}}{ \cancel{ 2} {cos}^{2}  \:  \frac{x}{2}   } \\  \\   \sf \implies \frac{sin \:  \frac{x}{2} . \cancel{cos \:  \frac{x}{2}}}{ cos  \:  \frac{x}{2}.\cancel{cos \:  \frac{x}{2}}   } \\  \\  \sf \implies \frac{sin \:  \frac{x}{2} }{cos \:  \frac{x}{2} }  \\  \\  \sf \implies tan \:  \frac{x}{2}

RHS:

\sf \implies tan \:  \frac{x}{2}

 \therefore

 \bold{LHS = RHS}

 \underline{ \sf Hence  \: Proved}

Similar questions